
Available online at www.sciencedirect.com
Computer Networks 51 (2007) 4951–4978

www.elsevier.com/locate/comnet
Two stage packet classification using most specific
filter matching and transport level sharing

M.E. Kounavis *, A. Kumar, R. Yavatkar, H. Vin

Intel Corporation, Intel Research and Development, 1343 NE Alex Way, Apartment 243, Hillsboro, OR 97124, United States

Received 25 January 2006; received in revised form 15 February 2007; accepted 20 August 2007
Available online 31 August 2007

Responsible Editor: D. Stiliadis
Abstract

In this paper we introduce two new concepts to the design of packet classification systems. First, we propose most spe-

cific filter matching (MSFM), an improvement over the well known Cross Producting algorithm [V. Srinivasan, S. Suri, G.
Varghese, M. Waldvogel, Fast and scalable layer four switching, in: Proceedings of ACM SIGCOMM, 1998] that signif-
icantly reduces the memory requirement of the earlier scheme. Second, we suggest that rules specifying the same source–
destination IP prefix pair can be grouped together forming shared sets of transport level fields. This property of Transport

Level Sharing (TLS), which characterizes real world classification databases is exploited for reducing a classifier’s memory
requirement and for hardware acceleration.

We split the classification process into two stages. First, we perform classification on source–destination IP prefix pairs
using the MSFM algorithm. Second, we perform classification on transport level fields exploiting transport level sharing. It
is the combination of most specific filter matching and transport level sharing which results in a scheme that requires no
more than 11 dependent memory accesses in the critical path independent of the size of the classification database. The
memory access bandwidth of our scheme is also bounded when our scheme is accelerated in hardware. Compared to other
schemes which involve a small and predictable number of steps in the critical path (e.g., Cross Producting [V. Srinivasan, S.
Suri, G. Varghese, M. Waldvogel, Fast and scalable layer four switching, in: Proceedings of ACM SIGCOMM, 1998] or
Recursive Flow Classification [P. Gupta, N. McKeown, Packet classification on multiple fields, in: Proceedings of ACM
SIGCOMM, 1999]) the combination of most specific filter matching and transport level sharing is associated with the least
memory requirement.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Switches; Routers; Packet classification; Most specific filter matching; Transport level sharing
1389-1286/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2007.08.004

* Corresponding author. Tel.: +1 503 712 9222.
E-mail addresses: michael.e.kounavis@intel.com (M.E. Kou-

navis), alok.kumar@intel.com (A. Kumar).
1. Introduction

Packet classification is the process of identifying
flows from among streams of packets that arrive
at routers. Packet classification is still an impor-
tant and open networking problem because the
.

mailto:michael.e.kounavis@intel.com
mailto:alok.kumar@intel.com

4952 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
classification step needs to take place as quickly as
possible in modern router systems. To ensure that
routers can process packets at link speeds ranging
from 10 Gbps (e.g., at the network edge) to 10–
100 Gbps (e.g., in the network core), the number of
memory accesses performed by the classifier must
be minimized. Further, the data structures main-
tained by the algorithm must fit within the small
amount of fast memory available in routers. Reduc-
ing the memory requirement of a classification
scheme is important because fast memory units are
usually expensive and because classifiers are
expected to support many more rules in the future
(e.g., 10,000–100,000 rules) than today. Memory size
and access bandwidth is typically limited in the hard-
ware architectures of modern router systems, calling
for new techniques for packet classification that min-
imize the space and time requirement.

In this paper we propose a scheme that can clas-
sify packets in a small and predictable number of
steps which is independent of the size of a classifica-
tion database. We introduce two new concepts to
the design of packet classification systems. First,
we propose most specific filter matching (MSFM)
[20–22], a refined version of the well known Cross
Producting algorithm [3] that addresses the memory
explosion problem associated with the earlier
scheme. The basic idea behind MSFM is that signif-
icant amount of cross products which are stored as
part of a classifier’s database can be removed from
the database with little penalty to the performance
of the classifier. Second, we suggest that rules that
specify the same source–destination IP prefix pair
can be grouped together forming shared sets of
transport level fields. We observe that in real world
databases many different sets of source–destination
IP prefix pairs are associated with identical sets of
transport level fields. This property of Transport
Level Sharing (TLS) [20–22], which characterizes
real world classification databases is exploited for
reducing a classifier’s memory requirement and for
hardware acceleration.

We split the classification process into two stages.
First, we perform classification on source–destina-
tion IP prefix pairs using the MSFM algorithm. Sec-
ond, we perform classification on transport level
fields exploiting transport level sharing. It is the
combination of most specific filter matching and
transport level sharing which results in a scheme
that requires no more than 11 dependent memory
accesses in the critical path independent of the size
of the classification database. While our approach
bears similarities with earlier schemes, and espe-
cially EGT [12], there are substantial differences in
our system design, which result in significant perfor-
mance benefit. EGT, for instance, finds all possible
matching IP prefix pairs for a packet whereas our
scheme finds a single match only which is the inter-
section of the matching IP prefix pairs. When com-
pared to other schemes that perform hierarchical
cuttings (e.g., HiCuts [8] and HyperCuts [17]), our
scheme has the advantage that it can guarantee that
the number of dependent memory accesses in the
critical path does not exceed an implementation spe-
cific bound. This bound is independent of the classi-
fication database used. In contrast, hierarchical
cutting schemes build trees of varying heights,
where the height of each tree depends on the classi-
fication database used. The relative disadvantage of
our approach as compared to HyperCuts is that our
approach uses more memory. Hierarchical cutting
schemes use heuristic algorithms that tradeoff the
depth of the tree with the memory requirement
and thus can keep the memory requirement of the
classifier small. In contrast our approach cannot
guarantee that the memory requirement of a classi-
fier does not exceed a space constraint, although it
does demonstrate reasonable memory requirement
for representative classification databases.

When compared to other schemes which also
involve a small and predictable number of steps in
the critical path (e.g., Cross Producting [3] or
Recursive Flow Classification [7]) our scheme is
associated with the least memory requirement. Spe-
cifically, the combination of MFSM and TLS dem-
onstrates the least memory requirement for
representative classification databases as compared
to the state-of-the-art requiring no more than 19–
446 KB of memory space for regular size databases
of 157–2399 rules. We also observe that the memory
requirement of MSFM and TLS scales well with
synthetic classification databases of much larger
sizes. To reduce the memory requirement of our
scheme we exploit properties that characterize real
world classification databases used by ISPs and
large corporations. We argue that, although such
properties characterize a few sample databases, they
are likely to hold for most databases.

Unfortunately predictable time performance and
reasonable memory requirement do not come for
free. Our scheme requires hardware acceleration in
order to operate efficiently. The additional hard-
ware required for implementing our scheme is not
as costly as a pure TCAM solution though. A hard-

Table 1
Example of transport level sharing

Src. IP
address

Dest. IP
address

Src.
port

Dest.
port

Action Priority

147.101.* * * ftp Permit 1
147.101.* * * 10–50 Deny 2
132.* 145.* * ftp Permit 3
132.* 145.* * 10–50 Deny 4

source
IP address

destination
IP address

132.0.0.0 132.255.255.255

132.59.0.0 132.59.255.255

128.0.0.0

128.67.0.0

128.67.255.255

128.255.255.255

(128.*, 132.59.*)

(128.67.*, 132.*)

partial overlap =
(128.67.*, 132.59.*)

Fig. 1. Partially overlapping filters.

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4953
ware unit needed for accelerating the combination
of MSFM and TLS can be much smaller and less
expensive than a TCAM unit used for implementing
the same classifier. For example we found that a
hardware unit used for accelerating MSFM and
TLS requires 21.6–65.7% of the entries of a TCAM
implementing the same classifier. Hardware acceler-
ation helps with reducing the memory access band-
width requirement of the classifier. Although our
scheme can be implemented entirely in software
and still require a small and predictable number of
dependent memory accesses, the memory access
bandwidth requirement is higher without accelera-
tion (16 times higher in our implementation).

The update process is currently time consuming
since it requires the creation of a number of different
lookup tables, the reordering of rules, the discovery
of shared sets of transport level fields and the crea-
tion of the data structures used by the hardware
accelerator. However, our approach can be modi-
fied to support fast incremental updates at the
expense of the optimality of the classification data
structure and lookup algorithm.

The paper is structured as follows. In Section 2
we formulate the classification problem. In Section
3 we discuss the characteristics of classification dat-
abases which we exploit in our design. In Section 4
we describe related work. In Section 5 we describe
the design of our algorithms and discuss how this
design is derived from first order principles. In Sec-
tion 6 we evaluate our scheme. Finally, in Section 7
we provide some concluding remarks.

2. Problem formulation

A packet classifier consists of a rule database, a
lookup algorithm and an update algorithm. A rou-
ter that supports classification stores its set of rules
R = {Ri, i 2 [1,n]} into the classification database.
Each rule comprises a set of fields F i ¼ ðF 1

i ; F
2
i ;

. . . ; F k
i Þ, a priority level Pi and an action Ai. Fields

specify ranges of values associated with portions
of the TCP/IP header (i.e., the source IP address,
the destination IP address, or the protocol field).
IP address ranges are usually specified as prefixes.
Port number ranges are arbitrary. A rule or a subset
of the fields of a rule is often called a filter. An
example of rules found in a router database is given
in Table 1.

The are two instances of the classification prob-
lem: The ‘single match’ classification problem can
be stated as follows: Given a set of rules R in an
ordered list L, what is the action A(p) associated
with the highest priority rule that matches a given
packet p? Another instance of the classification
problem, the ‘multiple match’ problem can be stated
as follows: Given a set of rules R in an ordered list
L, what are the actions Ai(p) and identifiers i(p)
associated with all the rules that match a given
packet p? In this document we present a solution
to the single match classification problem. Extend-
ing our approach for solving the multiple match
classification problem is the subject of future work.

The single match packet classification problem is
more difficult than IP routing [14] because a packet
may match with rules at arbitrary priority levels. We
believe that the need for classifying packets in a
small and predictable number of steps calls for
new techniques and methodologies for solving the
classification problem. The approach we follow in
this paper is to design a scheme based on the prop-
erties of classification rules.
3. Characteristics of classification rules

3.1. Characteristics of IP prefix pairs

Each rule in a database contains the specification
of a source and a destination IP prefix. Each IP pre-
fix can be specified as a wildcard, a range or an exact
value. For example, the IP prefix 132.* in the exam-
ple of Fig. 1 is a range that includes all IP addresses

F1F1 F2F2

Fn/2 + 1Fn/2 + 1

Fn/2Fn/2

Fn/2 + 2Fn/2 + 2

FnFn

…

…

Fig. 2b. n2/4 partial filter overlaps.

partially
specified

filters
(*, X)

(Y, *)

fully
specified

filters

(*, X)

(Y, *)

fully
specified

filters

(*, X)

(Y, *)

fully
specified

filters

(*, X)

Fig. 2c. Realistic partial filter overlaps.

4954 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
from 132.0.0.0 up to 132.255.255.255. Based on this
observation, IP prefix pairs may represent rectan-
gles, lines or points in the two-dimensional IP
address space. In addition, such filters may overlap
with each other either partially or completely. By
‘overlap’ of two filters we mean the set of all possi-
ble combinations of field values which define points
in the space included in each of the two filters. Two
filters overlap ‘partially’ if their overlap is different
from any of the two filters. For example, the filters
(128.67.*,132.*) and (128.*,132.59.*) shown in
Fig. 1 overlap partially. Their overlap is equal to
the filter (128.59.*,132.67.*).

Binary prefix pairs can form, in the worst case,
n Æ (n � 1)/2 partial overlaps, which is O(n2), where
n is the number of binary prefix pairs in a set. In
the special case where binary prefixes are IPv4 pre-
fixes the upper bound n Æ (n � 1)/2 is only achieved if
n 6 33. This happens because an IP prefix can only
have 33 lengths. If n > 33 the number of partial
overlaps is still O(n2) in the worst case, although
the upper bound n Æ (n � 1)/2 cannot be achieved
in practice. An example of a filter structure that cre-
ates the highest possible amount of partial overlaps
is shown in Fig. 2a. Each filter Fi shown in the figure
creates an overlap with every other filter Fj, i 5 j.
Another structure that creates n2/4 partial overlaps
is illustrated in Fig. 2b. The structure of Fig. 2b
can be achieved for any realistic value of n. In the
structure of Fig. 2b each filter Fi shown in the figure
creates an overlap with half of all other filters Fj,
i 5 j.

It has been observed that in real databases the
amount of partial overlaps formed between filters
is significantly smaller than the theoretical worst
case n Æ (n � 1)/2 as well as the n2/4 bound. Dat-
abases usually demonstrate filter structure which is
substantially different from the structures of Figs.
2a and 2b. The filter structure characterizing real
F1

F2

F3

Fn-1

Fn

…
-

…

Fig. 2a. Worst-case partial filter overlaps.
databases is shown in Fig. 2c. While in the struc-
tures of Figs. 2a and 2b every filter forms partial
overlaps with at least half of all other filters, in
the realistic structure of Fig. 2c overlaps are created
from only a small subset of the filters.

There are three sources of partial overlaps
between IP prefix pairs in classification databases.
First, partial overlaps may be created between
partially-specified filters. We define the set FP of
the partially-specified filters of a database L as the
set

F P ðF Þ ¼ fF i ¼ ðSi;DiÞ : F i 2 F ; Si ¼ � _ Di ¼ �g;
ð1Þ

where by _ we mean the ‘OR’ logical operator and F

is the set of IP prefix pairs of database L. Partially-
specified filters have the wildcard in the source or
destination IP address dimensions (i.e., they are fil-
ters of the form (*,X) or (Y, *)). Similarly we define
the set FF of the fully-specified filters of a database L

as the set:

F F ðF Þ ¼ fF i ¼ ðSi;DiÞ : F i 2 F ; Si 6¼ � ^ Di 6¼ �g;
ð2Þ

where ^ is the ‘AND’ logical operator.
Each filter having the wildcard in the source IP

address dimension creates a unique partial overlap
with all filters having the wildcard in the destination

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4955
IP address dimension. A second source of partial
overlaps includes overlaps created between fully-
specified filters (i.e., filters that do not include the
wildcard). Fully-specified filters may overlap with
each other either fully or partially. Third, overlaps
may be created between fully- and partially-speci-
fied filters.

It has been observed in earlier studies (in Ref.
[16]) that partially-specified filters are the main
source of partial overlaps in classification databases.
In addition, partially-specified filters represent a
small fraction of the total number of filters in regu-
lar size and large classification databases ranging
from 0% to 20%. This happens because network
administrators usually specify rules that apply to
the traffic exchanged between specific IP address
domains. Fully-specified filters create an insignifi-
cant amount of overlaps between each other ranging
from 0% to 4%. This happens because in most cases
fully-specified filters are segments of straight lines or
points (i.e., the source or destination field represents
a host or an important server) and because network
clients and servers are usually connected to different
subnets (i.e., they are associated with disjoint IP
prefixes). Because of these reasons the number of
partial filter overlaps observed in classification dat-
abases is small and has been found to be between
0% and 1.6% of the n Æ (n � 1)/2 theoretical worst
case and 0–3.2% of the n2/4 bound in representative
classification databases.

We believe that, as network administration poli-
cies become more complex and applications requir-
ing end-to-end Quality of Service (QoS) become
more popular, these observed properties of classifi-
cation databases will continue to hold in the future.
First, it is likely that classification rules that do not
specify the wildcard (*) in the source or destination
IP address dimension will continue to represent the
majority of rules in classification databases. This is
likely to happen because such rules have the flexibil-
ity of expressing more refined administration poli-
cies between specific network domains. Hence such
rules can be used for expressing a wider set of access
control and QoS policies than the rules which apply
to all the traffic sent to or from network domains.
Second, we believe that partial filter overlaps cre-
ated between fully-specified filters will continue to
represent a small fraction of the total amount of fil-
ter overlaps. There are two reasons for this. First, it
is likely that clients and servers will continue to be
connected to different subnets. This is a standard
network administration practice for security. Sec-
ond, fully-specified filters may continue to be repre-
sented by segments of straight lines or points in the
two-dimensional space. Because of all these reasons
we believe that our solution can be useful in the
future just as it is applicable in representative classi-
fication databases which are in use today.

3.2. Characteristics of transport level fields

In the Internet there are thousands of routers but
relatively only a few, commonly used applications.
As a result, only a small number of port number
values and ranges are usually specified in rules. Ear-
lier studies on the properties of classification dat-
abases report the fact that source destination IP
prefix pairs are associated with a small number of
transport level fields [12] and that transport level
fields form sets which are being shared between
many different source–destination IP prefix pairs
[16].

Table 1 shows an example of transport level shar-
ing. The rules at priority levels 1 and 2 in the table
are associated with the same IP prefix pair (i.e.,
147.101.*,*). The first rule specifies the destination
port number to be equal to ftp whereas the second
rule specifies the destination port number to be in
the range 10–50. The rules at priority levels 3 and 4
specify a different IP prefix pair (i.e., 132.*,145.*)
but the same transport level fields as rules 1 and 2.
In this case the set {ftp, 10–50} of transport level
fields is shared between the sets of rules 1–2 and 3–
4. In the example of Table 1 we also observe that
the relative priority and action associated with each
entry of the shared set of transport level fields is the
same in each occurrence of the set.

We define the set B(L) of the shared sets of trans-
port level fields of a classification database L as the
set of all unique instances of sets of transport level
fields Bi associated with the same source–destination
IP prefix pair, where the relative priority and action
of each entry of every set Bi is the same in each
occurrence of this set.

Transport level sharing is a property which char-
acterizes typical classification databases because
network administrators specify the same transport
level fields associated with popular applications or
common network management practices in many
different IP prefix pairs. The number of entries in
unique instances of sets of transport level fields
has been investigated in [16] and has been found
to be between 11% and 42% of the number of rules
in a database.

most specific filter =
(128.67.32.*, 132.59.10.*)

source IP address

destination IP address

packet = (128.67.32.5, 132.59.10.10)

(128.*, 132.*)

(128.67.*, 132.59.*)

(128.67.*, 132.*)

(128.67.32.*, 132.59.10.*)

Fig. 3. Most specific filter of a packet.

4956 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
3.3. Implications

3.3.1. Classification on the source and destination IP

address dimensions
Since each packet represents a point in the two-

dimensional space, it may be contained within the
geometrical space defined by one or more IP prefix
pairs in a database. Therefore, a packet may match
multiple IP prefix pairs within a database. We spec-
ify the set FM of all matching IP prefix pairs
Fi = (Si,Di) of a packet p associated with source
IP address S and destination IP address D as

F MðpÞ ¼ fF i ¼ ðSi;DiÞ : F i 2 F ; Si � S ^ Di � Dg;
ð3Þ

where by � we mean the ‘prefix of or equal to’ oper-
ator, and F is the set of IP prefix pairs of a database.
The expression X � Y is true when X is a prefix of Y

or X = Y.
Identifying the highest priority rule requires com-

paring the transport level fields associated with a
packet’s matching IP prefix pairs with the appropri-
ate fields contained in the packet header. Clearly,
the larger the number of filters that a packet may
match with, the greater the latency of identifying
the highest priority rule that matches the packet
may be. Finding all possible matches for a packet
in the source–destination IP address dimensions
may require a significant amount of memory acces-
ses. In addition, the number of worst case memory
accesses required may vary from one database to
another.

An alternative approach involves finding a single
match for a packet in the source–destination IP
address space. This match should be equal to the
smallest intersection of filters that cover the point
in the space representing the packet. We call this fil-
ter the most specific filter for the packet. The
approach we follow in this paper is to split the
packet classification process into two stages and in
the first stage find the most specific filter for a
packet in the source and destination IP address
dimensions. We formally define the most specific fil-
ter FMS of a packet p as

F MSðpÞ ¼
\jF M ðpÞj

i¼1

F i; F i 2 F MðpÞ; ð4Þ

where by \ we mean the intersection operator and
by jxj we mean the cardinality of set x.

An example of a most specific filter for a packet is
shown in Fig. 3. A packet p shown in the figure is
associated with source IP address equal to
128.67.32.5 and destination IP address equal to
132.59.10.10. The packet matches four filters. One
approach to classify the packet would be to search
the rules associated with each of the packet’s match-
ing IP prefix pairs. An alternative approach would
be to search the rules which cover the most specific
filter which is equal to (128.67.32.*,132.59.10.*).

To support most specific filter matching, classifi-
ers need to include all possible intersections between
IP prefix pairs into their data structures. We argue
that most specific filter matching is a feasible tech-
nique because the number of partial IP prefix pair
overlaps in databases is smaller than the theoretical
worst case. As it has been discussed earlier, the
number of partial overlaps which IP prefix pairs
form in the two-dimensional space is small. There-
fore the memory requirement of algorithms that
find the most specific filter of packets may not be
prohibitive in practice.
3.3.2. Classification on transport level fields

One of the benefits from transport level field
sharing is compression. Each shared set of transport
level fields needs to be stored only once for all IP
prefix pairs that share this set. As a result the total
amount of entries required for storing transport
level fields can be very small.

A more significant benefit from transport level
sharing is that classification based on transport level
fields can be easily implemented in hardware. Since
the total number of entries in unique sets of trans-
port level fields is small these sets can be stored in
some specialized hardware unit capable of checking
whether a packet matches the entries of these sets in
parallel. Such hardware unit would be similar to a
Ternary CAM (TCAM) unit [10] with the exception

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4957
that it would only store the shared sets of transport
level fields of databases instead of the fields of all
rules in databases. The traditional TCAM design
can be extended in many different ways to support
transport level range matching operations. One
way to modify the traditional TCAM design is to
introduce binary comparator circuits in each entry
of the hardware unit in order to support efficient
multidimensional range matching checks. Another
approach is to use an off-the-shelf TCAM unit after
expanding port number ranges to prefixes. A range
of alternative hardware designs is presented in Sec-
tion 5.

The cost of a specialized hardware unit would be
significantly higher if the transport level fields of
rules were stored without taking into account shar-
ing. The cost of a specialized unit used for storing
the unique instances of sets of transport level fields
may be viable however, even for large classification
databases. For example, we found that a hardware
unit used for storing the unique sets of the transport
level fields of the databases we experimented with
requires 21.6–65.7% of the entries of a hardware
unit that stores the transport level fields of all rules
in the same databases. For our experiments we used
the same databases as in Ref. [16]. The range 21.6–
65.7% which we report here differs from the range
11–42% reported in [16] because port number ranges
in our case are expanded to prefixes.

Fig. 4 illustrates our framework for two stage
packet classification using most specific filter match-
set #1

set #2

set #3

set #m

…

stage 1 returns
the most specific filter FMS

for a packet p

stage 1 returns
the most specific filter FMS

for a packet p

stage 2 returns the
action A(p)

stage 2 returns the
action A(p)

stage 2
in hardware

pointers
to shared

sets of
transport level

fields

stage 1
in software

Fig. 4. Two stage packet classification using most specific filter
matching and transport level sharing.
ing and transport level sharing. The classification
process is split into two stages. In the first stage clas-
sification is performed in software on the source and
destination IP address dimensions. The first stage
determines the most specific filter that matches with
a packet. This most specific filter is associated with
at least one shared set of transport level fields. Stage
1 returns an ordered list of pointers to shared sets of
transport level fields, which are used for classifica-
tion in the remaining dimensions. In stage 2, classi-
fication is performed in hardware. A selected subset
of the transport level field sets stored in the hard-
ware unit is activated in a single step. The second
stage returns the action associated with the highest
priority entry among the transport level field sets
identified in Stage 1.

4. Related work

Existing packet classification algorithms [1] can
be grouped into four classes: trie-based algorithms,
hash-based algorithms, parallel search algorithms,
and heuristic algorithms. Throughout this discus-
sion, we use n to denote the number of rules in a
classification database, k to denote the number of
fields (i.e., dimensions), and w to denote the maxi-
mum length of the fields (in bits).

Trie-based algorithms [2,3,5,6] build hierarchical
radix tree structures where once a match is found in
one dimension a search is performed in a separate
tree linked into the node representing the match.
Examples of such algorithms are the Grid-of-Tries
[3] and Area-based Quad Tree (AQT) [5] algo-
rithms. Trie-based algorithms require, in worst case,
as many memory accesses as the number of bits in
the fields used for classification. Multi-bit trie data
structures are more efficient from the perspective
of the number of memory accesses required. How-
ever, these data structures incur significantly higher
memory space overhead. In general, trie-based
schemes work well for single-dimensional searches.
However, the memory requirement of these schemes
increases significantly with increase in the number
of search dimensions.

Hash-based algorithms [9,11] group rules accord-
ing to the lengths of the prefixes specified in different
fields. The groups formed in this manner are called
‘tuples’. Hash-based algorithms perform a series of
hash lookups one for each tuple to identify the high-
est priority matching rule. Tuple space search has
O(n) storage and time complexity. Hash-based algo-
rithms, in the worst case, require as many memory

index 1 index 2

index 1 index 2

lookup on a
table of cross products

index 1 index 2

index 1 index 2

index 1 index 2

index 1 index 2

lookup on a
table of cross products

LPM
lookup

on
source IP
address

LPM
lookup

on
destination IP

address

index 1 index 2

index 1 index 2

Fig. 5. Cross Producting.

4958 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
accesses as the number of hash tables, and the num-
ber of hash tables can be as large as the number of
rules in a database. As a result, hash-based tech-
niques do not scale well with the number of rules.
An optimized hashing technique, referred to as rect-
angle search [9], reduces the lookup time complexity
from O(n) to O(w) in two dimensions. However, to
support lookups in more than two dimensions, the
algorithm may still require a significant number of
memory accesses.

Parallel algorithms formulate the classification
problem as an n-dimensional matching problem
and search each dimension separately. In some algo-
rithms [4], when a match is found in a dimension, a
bit vector is returned identifying the matches. The
logical AND of the bit vectors returned from all
dimensions identifies the matching rules. Such bit
vector techniques are associated with O(n) memory
accesses in the lookup process. Fetching a single bit
vector or an aggregate bit vector (as described in
[13]) can be memory access intensive, especially in
cases where the classification database contains
more than a few thousand rules. Another parallel
search technique called Cross Producting Table [3]
reduces the lookup time complexity to O(kw) where
k is the number of fields and w is maximum length
of the fields. However, this technique increases the
worst case storage complexity to O(nk) making it
impractical. An improvement over the Cross Pro-
ducting technique called distributed Cross Product-
ing of field labels is described in [15]. This technique
reduces the memory requirement of the classifier at
the expense of the lookup time. Distributed Cross
Producting can be accelerated, however, using
bloom filters.

A fourth category of algorithms includes heuris-
tic algorithms that exploit the structure and redun-
dancy in the rule-set (e.g., Recursive Flow
Classification [7] and HiCuts [8]). Most of the heu-
ristic algorithms proposed to-date are associated
with very low lookup time complexity O(k); how-
ever, they impose significant memory space require-
ment O(nk). Hence, these algorithms are suitable for
single- or two-dimensional searches, but their space
requirement makes them unsuited for the more
common five-dimensional searches. A variation of
[8] called HyperCuts [17] appears to be associated
with both smaller lookup time and space require-
ment as compared to HiCuts [8]. Like HiCuts
[8], however, the worst case lookup time require-
ment of HyperCuts depends of the database
used.
5. Algorithm design

5.1. Cross Producting

The most specific filter of a packet can be found
with well known techniques such as Set Pruning Tries
[2], Cross Producting Table [3] and Recursive Flow
Classification [7]. Cross Producting and Recursive
Flow Classification are the fastest techniques because
they can search the source and destination IP
addresses of packets in parallel as opposed to sequen-
tially. Among the two, Cross Producting can impose
the least memory requirement because this technique
employs a single stage of parallel searches and hence
requires a single lookup table. The algorithm which
we propose in this paper is built upon the Cross Pro-
ducting technique due to its speed and potential for
memory requirement reduction.

Cross Producting is shown in Fig. 5. In each of
the source and destination IP address dimensions
a Longest Prefix Matching (LPM) search takes
place. Each search returns an index. The two
indexes hI1i and hI2i returned from the stage of par-
allel LPM searches are combined into a third index
hI1I2i which is used for accessing a table of cross
products. By the term ‘cross product’ we mean a fil-
ter Fi with source IP address equal to the source IP
address of some filter Fj of a database and destina-
tion IP address equal to the destination IP address
of some other filter Fk of the database, not necessar-
ily equal to Fj. A formal definition of the set of cross
products FC of a database is given below

F CðF Þ ¼ fF i ¼ ðSi;DiÞ :
there exist filters

F j ¼ ðSj;DjÞ 2 F ; F k ¼ ðSk;DkÞ 2 F

for which Si ¼ Sj ^ Di ¼ Dkg; ð5Þ

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4959
where F is the set of IP prefix pairs of the database.
The table of cross products can be implemented in
many different ways such as a hash table.

The reason why the Cross Producting table tech-
nique places all possible cross products into a
lookup table is because the stage of LPM searches
may return a filter that does not exist in the classifi-
cation database. To explain why this may happen
we show an example in Fig. 6. In the example of
Fig. 6, three filters exist in a classification database:
(128.67.*,132.59.*), (128.67.32.*,121.45.5.*) and
(125.12.12.*,132.59.10.*). The most specific filter
of the packet (128.67.32.5, 132.59.10.10) is the filter
(128.67.*,132.59.*). The stage of LPM searches
returns the prefix 128.67.32.* from the source IP
address dimension and the prefix 132.59.10.* from
the destination IP address dimension. This happens
because these prefixes are the longest matching pre-
fixes in the classification database for the given
packet. The filter which results by combining the
returned source and destination IP prefixes
(128.67.32.*,132.59.10.*) is clearly a filter that is
not included in the classification database. Such fil-
ter is a cross product. By calculating all possible
cross products of a database and placing them into
a lookup table, the Cross Producting technique
guarantees that a match is always found for every
packet by the stage of parallel LPM searches.
5.2. Improving Cross Producting

The main disadvantage of the Cross Producting
technique is the increase in the classification data
structure size caused by the need to store all cross
products of IP prefix pairs. Cross products can be
in the worst case as many as the square of the num-
ber of rules in a classification database. In represen-
source
IP address

destination
IP address

132.59.255.255

132.59.10.0
132.59.10.255

128.67.0.0

128.67.32.0

128.67.255.255

128.67.32.255

121.45.5.0

121.45.5.255

125.12.12.255

125.12.12.0

(128.67.32.*, 121.45.5.*)

(125.12.12.*, 132.59.10.*)

packet =
(128.67.32.5, 132.59.10.10)

most specific filter =
(128.67.*, 132.59.*)

cross product =
(128.67.32.*, 132.59.10.*)

132.59.0.0

Fig. 6. Cross Producting returning a non-existent filter.
tative databases we experimented with, the number
of cross products is significantly higher than the
number of rules. For example, in the access control
list ‘ACL3’ shown in Tables 3 and 4 below there are
431 unique source IP prefixes and 516 unique desti-
nation IP prefixes resulting in 222,396 cross prod-
ucts. Because of this reason the memory
requirement of the Cross Producting technique for
ACL3 is almost 1MB.

In this section we argue that the size of the
lookup table used by the Cross Producting tech-
nique can be significantly reduced by observing that
from among the many cross products only a few
really need to be placed in the lookup table. A sig-
nificant amount of cross products can be removed
the lookup table with little penalty to the perfor-
mance of the classifier.

A first group of cross products which can be
removed from the lookup table are those for which
there is no filter in the database apart from (*,*)
that contains them. We call these cross products
‘not covered’ since they are only contained into
(*,*). We formally define the set FNC of the not cov-
ered cross products of a database as

F NCðF Þ ¼ fF i 2 F CðF Þ; F i 62 F [F IðF Þ :
there is no filter F j 2 F

for which F j 6¼ ð�; �Þ; F j � F ig; ð6Þ
where by [we mean the union operator, F is the set
of IP prefix pairs of a database and FI(F) is the set of
intersections of the IP prefix pairs of F. The opera-
tor � for filters means ‘completely contains or is
equal to’. For two filters X, Y for which
X = (x1,x2) and Y = (y1,y2), the expression X � Y
means x1 � y1 and x2 � y2. The reader should notice
that in the definition of the set FNC(F) we do not in-
clude cross products which are database filters or fil-
ter intersections. The reason why we exclude such
filters from definition (6) is to help with proving
the correctness of our algorithm.

A cross product which belongs to the set FNC(F)
for some set of filters F is shown in the exam-
ple of Fig. 7. In the example of Fig. 7 the fil-
ters (128.67.32.*,121.45.5.*) and (125.12.12.*,
132.59.10.*) form the cross product (125.12.12.*,
121.45.5.*) which is only contained into the two-
dimensional space (*,*). This cross product is a
not covered cross product. Filters (128.67.32.*,
121.45.5.*) and (125.12.12.*,132.59.10.*) also form
the cross product (128.67.32.*,132.59.10.*) which

source
IP address

destination
IP address

132.59.10.0
132.59.10.255

128.67.32.0

128.67.32.255

121.45.5.0
121.45.5.255

125.12.12.255

125.12.12.0

(128.67.32.*, 121.45.5.*)

(125.12.12.*, 132.59.10.*)

not covered cross product =
(125.12.12.*, 121.45.5.*)

Fig. 7. Example of a not covered cross product.

128.67.32.255

125.12.12.255

source
IP address

destination
IP address

132.59.10.0
132.59.10.255

128.67.32.0

121.45.5.0
121.45.5.255

125.12.12.0

(128.67.32.*, 121.45.5.*)

(125.12.12.*, 132.59.10.*)

partially covered cross product =
(125.12.12.*, 121.45.5.*)

255.255.255.255

(125.12.12.*,*)

Fig. 8. Partially covered cross product.

4960 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
is not covered but omitted from the figure for the
sake of simplicity.

The reason why not covered cross products can
be removed from the lookup table is because they
are only contained into (*,*). If the stage of LPM
searches does not return an entry in the lookup
table, then this means that the cross product which
results from the LPM searches is not covered.
Hence the most specific filter for a given packet is
(*,*). So, one could design a refined version of the
Cross Producting technique where not covered cross
products are removed from the lookup table and the
algorithm returns (*,*) if an entry in the table is not
found.

There is also another group of cross products
which can be removed from the lookup table. These
are the cross products which are only covered by
partially-specified filters or filter intersections that
are partially-specified. We call these cross products
‘partially covered’. The term should not be confused
with ‘partially overlapping’. Partially covered cross
products are called that way because they are only
contained into filters which specify one of the two
dimensions. We formally define the set FPC of the
partially covered cross products of a database as

F PCðF Þ ¼ fF i 2 F CðF Þ; F i 62 F [F IðF Þ [F NCðF Þ :
there is no filter F j 2 F F ðF [F IðF ÞÞ
for which F j � F ig; ð7Þ

where F is the set of IP prefix pairs of a database,
FI(F) is the set of intersections of the IP prefix pairs
of F, and FNC(F) is the set of not covered cross
products of F. The reader should also notice that
in the definition of the set FPC(F) given above we ex-
clude cross products which are database filters, filter
intersections or not covered cross products. Such
definition helps with proving the correctness of
our algorithm.
A cross product which belongs to the set
FPC(F) for some set of filters F is shown in the
example of Fig. 8. In the example of Fig. 8 the
filters (128.67.32.*,121.45.5.*) and (125.12.12.*,
132.59.10.*) form the cross product (125.12.12.*,
121.45.5.*) which is contained into the partially-
specified filter (125.12.12.*,*). This cross product
is a partially covered cross product. Thefilters
(128.67.32.*, 121.45.5.*) and (125.12.12.*,
132.59.10.*) also form the cross product
(128.67.32.*, 132.59.10.*) which is omitted for the
sake of simplicity.

The reason why partially covered cross products
can be removed from the lookup table is because
they are only contained into partially-specified fil-
ters. If the stage of LPM searches does not return
an entry in the lookup table, then this means that
the cross product which results from the stage of
parallel LPM searches is either partially covered
or not covered. Hence, the most specific filter for a
given packet is either a partially-specified filter or
(*,*). If the most specific filter for a packet is par-
tially-specified but not (*,*), this filter can be poten-
tially identified from the stage of parallel LPM
searches as explained below. On the other hand, if
the most specific filter for a packet is (*,*), this filter
can be returned once all other searches fail.

So, one could refine the Cross Producting tech-
nique even further by removing both the not cov-
ered and partially covered cross products from the
lookup table. If an entry is not found in the lookup
table, then the algorithm checks whether the most
specific filter for a given packet can be determined
by the result of the LPM searches. If the most spe-
cific filter cannot be determined, the algorithm
returns (*,*).

The only cross products which cannot be
removed from the lookup table without significantly

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4961
penalizing the performance of the classifier are those
which are neither not covered nor partially covered.
We call these cross products ‘fully covered’. We
define the set FFC of the fully covered cross products
of a database as

F FCðF Þ ¼ F CðF Þ � F NCðF Þ � F PCðF Þ: ð8Þ
From definitions (6)–(8) one can show that the set of
fully covered cross products FFC(F) of a set of filters
F is the set which includes the following elements:

• all fully-specified filters in F,
• all filter intersections that are fully-specified,
• all filters which are formed by combining the

source and destination IP prefixes of different
IP prefix pairs and which are contained into
fully-specified filters in F or filter intersections
that are fully-specified.
Theorem 1. Let F be a set of IP prefix pairs. Then,

the set of fully covered cross products FFC(F)

associated with F is given by:
F FCðF Þ ¼ F F ðF Þ [F F ðF IðF ÞÞ [F IN ðF Þ1; ð9Þ
where the set FIN(F) introduced in Eq. (9) is given by

the expression:

F IN ðF Þ ¼ fF i 2 F CðF Þ; F i 62 F [F IðF Þ :
there exists a filter F j 2 F F ðF [F IðF ÞÞ
for which F j � F ig: ð10Þ

Theorem 1 tells us that the set of fully covered
cross products FFC (F) associated with a set of filters
F can be found as the union of three terms. The first
term FF(F) represents the fully-specified filters in F.
The second term FF(FI(F)) represents the intersec-
tions of filters in F which are fully-specified. The
third term, which we denote as FIN(F), represents
filters which are neither elements of the set of
fully-specified filters FF(F) nor elements of the set
of intersections that are fully-specified FF(FI(F)). The
elements of this set FIN(F) are contained into at least
one fully-specified filter or fully-specified filter inter-
section. The elements of the set FIN(F) are formed
by combining the source and destination IP prefixes
of different IP prefix pairs. We call these filters ‘indi-
cator filters’ because any of these filters, if returned
after the stage of parallel LPM searches, can point
to the most specific filter for the packet which is
classified. Because of the fact that indicator filters
do not belong to any of the sets FF(F) or FF(FI(F))
(i.e., they are not filters of a database but only arti-
ficially formed regions) none of the indicator filters
can be the most specific filter of a packet. The role
of indicator filters in our scheme is further explained
in Section 5.3. The Proof of Theorem 1 is given in
the Appendix.
5.3. Most specific filter matching (MSFM)

5.3.1. Algorithm description

The observations discussed above motivate the
design of a new two-dimensional scheme for finding
the most specific filter for a packet. We call our
scheme ‘most specific filter matching’ (MSFM).
Like Cross Producting, our scheme uses parallel
LPM searches in the source and destination IP
address dimensions. Unlike Cross Producting, our
scheme does not include all cross products into a
lookup table. Instead, our scheme includes entries
associated with fully covered cross products into a
primary lookup table and entries associated with
partially-specified filters into two secondary lookup
tables. A separate entry is stored for the entire two-
dimensional space (*,*).

The first of the two secondary tables contains
entries associated with all partially-specified filters
that have the wildcard in the destination IP address
dimension (i.e., filters of the form (X, *)). The sec-
ond secondary table contains entries associated
with all filters having the wildcard in the source
IP address dimension (i.e., filters of the form
(*,Y)). The primary table is implemented as a hash
table.

The MSFM algorithm builds two trie data struc-
tures for the source and destination IP prefixes of
filters in order to perform parallel LPM searches
on these prefixes. Each prefix is marked as associ-
ated with a partially- or fully-specified filter or both.
The lookup process of the MSFM algorithm, shown
in Fig. 9, is as follows:

Step 1: Two parallel LPM searches are performed
in the source and destination IP address
dimensions. For each packet each search
returns the longest matching prefix associ-
ated with a partially-specified filter and
the longest matching prefix associated with
a fully-specified filter. Each prefix is
mapped into a separate index. Both
searches return a total of four indexes.

Step 2: After the step of parallel LPM searches
is complete lookup tables are accessed in

index 1 index 2

index 1 index 2

lookup on a
table of

fully covered
cross products

index 1 index 2

index 1 index 2

primary
table

index 3

secondary
table of filters

of the form
(X, *)

index 4

LPM lookup
on the

source IP
address

LPM lookup
on the

destination IP
address

secondary
table of filters

of the form
(*, Y)

Fig. 9. Lookup Process in the MSFM algorithm.

4962 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
parallel. Let hI1i and hI2i be the indexes
associated with fully-specified filters
returned from the source and destination
LPM searches of Step 1. The combined
index hI1I2i is used for accessing the pri-
mary lookup table. Similarly, let hI3i be
the index associated with a partially-speci-
fied filter returned from the LPM search
on the source IP address dimension. The
index hI3i is used for accessing the first of
the two secondary tables. Finally, an index
hI4i associated with a partially-specified fil-
ter returned from the LPM search on the
destination IP address dimension is used
for accessing the second secondary table.

Step 3: In this step the results from the parallel
queries on the lookup tables are examined.
If the query on the primary table returns a
match, this match indicates the most spe-
cific filter of the packet. If the query on
the primary table does not return a match
then there may be a case that either the first
or the second secondary table returns a
match. In this case, the match returned is
the most specific filter of the packet, which
is a partially-specified filter. If none of the
lookup tables returns a match, then
the most specific filter for the packet is
the two-dimensional space (*,*). In this
case the algorithm returns (*,*).
5.3.2. Correctness

The correctness of MSFM scheme can be for-
mally proven using the following theorem:
Theorem 2. Let FMS = (SMS,DMS) be the most

specific filter for a packet p. Then the following

statements are true:

(i) if SMS 5 * ^ DMS 5 *, then a stage of

parallel LPM searches on the source and

destination addresses of p returns a filter

FLPM = (SLPM,DLPM) which is either equal to

FMS or it is completely contained into FMS.

The relationship between filters FMS and FLPM

can be formally expressed as FMS � FLPM.

(ii) if SMS 5 * ^ DMS = *, then the prefix returned
from an LPM search on a tree that contains the

source IP prefixes of partially-specified filters

(i.e., filters of the form (X, *)) is exactly equal

to SMS.

(iii) if SMS = * ^ DMS 5 *, then the prefix returned

from an LPM search on a tree that contains the

destination IP prefixes of partially-specified fil-

ters (i.e., filters of the form (*,Y)) is exactly
equal to DMS.

The Proof of Theorem 2 is given in the Appendix.
Theorem 2 tells us is that if the most specific filter
for a packet is fully-specified then the stage of par-
allel LPM searches returns either this most specific
filter or a filter that is completely contained into
the most specific filter. In the second case, by defini-
tion (9) and statement (i) of Theorem 2, the filter
returned is an indicator filter. The entry associated
with this indicator filter can be set to point to the
most specific filter for the packet which is classified.
The MSFM algorithm is correct in this case because
all possible indicator filters for given packets are
identified and placed into the primary table.

If the most specific filter for a packet is partially-
specified then the stage of parallel LPM searches
returns exactly this most specific filter according to
statements (ii) and (iii) of Theorem 2. To make sure
that the stage of parallel LPM searches returns the
longest matching prefixes of partially-specified fil-
ters, MSFM marks each prefix as being associated
with a fully- or partially-specified filter or both. If
the query on the primary lookup table does not
return a match then the most specific filter for a
packet must have the wildcard in the source or des-
tination IP address. In this case either the first or the
second secondary table may return a match. If no
table returns a match, then this means that the only
filter which covers the packet is the two-dimensional
space (*,*).

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4963
5.3.3. Example

We further illustrate how MSFM works by an
example. Let us consider the filters A, B, C, D and
E shown in Table 2 and Fig. 10. The combinations
of the source and destination IP prefixes of these fil-
ters (including the wildcard *) form 20 different
regions in the two-dimensional space. Among these
regions, filters A–E and are illustrated with thick
continuous lines in Fig. 10. The other nine regions
R1–R9 shown in the figure correspond to cross prod-
ucts. Regions R1–R9 are illustrated with thin dotted
lines in Fig. 10. For the sake of simplicity the figure
omits cross products that have the wildcard (*) in
the source or destination IP address dimensions.

The smallest filter that completely covers the
regions R1, R3 and R4 in the example of Fig. 10 is
filter A, which is the entire two-dimensional space
(*,*). The points in the space that are contained into
the regions R1, R3 and R4 (but not into regions D

and E) are also contained into the two-dimensional
space (*,*). Hence R1, R3 and R4 are not covered
cross products. If the entries for the regions R1, R3

and R4 are removed from the lookup table, the
scheme still works provided that there exists a sepa-
rate entry for the filter (*,*) which is checked in the
case the stage of parallel LPM searches fails to
return any valid result.
A

B

C

E

R1

R2

R3

R4

R
5

R6 R7

121.45.5.0

121.45.5.255

132.59.10.0 255.255.255.255

128.67.0.0

128.67.32.255

125.12.12.255

125.12.12.0

128.67.32.0

128.67.255.255

147.101.10.0

147.101.10.255

255.255.255.255

132.59.0.0

132.59.10.255

132.59.255.255

D

R8R8

R9R9

Fig. 10. An example of source–destination IP prefix pairs.

Table 2
The filters A–E in the example of Fig. 10

Filer Src. IP address Dest. IP address

A * *
B 147.101.10.* *
C 128.67.* 132.59.*
D 125.12.12.* 132.59.10.*
E 128.67.32.* 121.45.5.*
Similarly, we observe that the regions R5R6 and
R7 can be removed from the lookup table as well.
R5R6 and R7 are completely covered by filter B,
which is a partially-specified filter having the wild-
card in the destination IP address. In addition, filter
B is the filter with the smallest coverage area that
completely covers regions R5, R6 and R7. Hence
R5, R6 and R7 are partially covered cross products.
We observe that an LPM search in the source IP
address dimension returns the source IP prefix of fil-
ter B for all packets representing points in the
regions R5, R6 and R7. Therefore, the results of a
stage of parallel LPM searches can still identify filter
B even if the cross products R5, R6 and R7 are not
included in the lookup table. As a result, the cross
products R5, R6 and R7 do not need to be placed
in the lookup table.

The only regions which cannot be removed from
the lookup table in the example of Fig. 10 are
regions R2, R8 and R9. These regions are completely
covered by a fully-specified filter (C). Region R2 for
example, is formed by the destination IP prefix of
filter D and the source IP prefix of filter E. There-
fore, for any packet that represents a point included
into R2 there needs to be an entry in the lookup
table associated with this region. Region R2 is a
fully covered cross product and, more specifically,
an indicator filter.
5.3.4. Time and space requirements

The lookup time complexity of the MSFM algo-
rithm is O(w) where w is the number of bits in the
source or destination IP address fields. To find indi-
cator filters MSFM needs to scan all source and des-
tination IP prefixes in the lookup table. Finding
indicator filters is associated with O(n4) complexity
in our current implementation, where n is the num-
ber of filters in the database. This operation, how-
ever, is not part of our fast lookup algorithm and
hence it does not penalize the performance of the
classifier. Indicator filters are determined only dur-
ing the times the classification data structure is built.
The storage complexity of the MSFM algorithm is
O(n2), where n is the number of IP prefix pairs in
a database. The storage complexity of MSFM is
the same as the complexity of Cross Producting.
In reality, however MSFM requires significantly
fewer KB of memory to store its lookup data
structure.

For example, for the set of filters shown in
Fig. 10, the Cross Producting technique needs to

distribution of the number of indicator filters 90

100

4964 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
place entries for 20 regions of the two-dimensional
space in the lookup table. MSFM requires to place
entries for 8 regions only (i.e., filters A–E, R2, R8

and R9) resulting in 60% reduction of the lookup
data structure size. In real large databases the reduc-
tion is even greater for two reasons. First partially-
specified filters represent a small percentage of the
total number of filters in large databases as dis-
cussed in Section 3. As a result, the size of the sec-
ondary tables is expected to be small. Second,
most fully-specified filters are segments of straight
lines or points. As a result, the number of indicator
filters that need to be placed in the primary table is
expected to be small. The primary table contains at
least as many entries as the number of partial over-
laps formed between filters. This number, however,
is expected to be lower than the theoretical worst
case as discussed earlier.

Table 3 shows the sizes of the primary and sec-
ondary tables for the databases we experimented
with. The first three databases (i.e., ACL 1–ACL
3) are access control lists from large ISPs whereas
the fourth database (i.e. ACL 4) is an access control
list from a corporate intranet. The number of dat-
abases we present in this paper is small due to the
fact it is hard to get permission from ISPs and large
corporations to disclose access control list content.
Despite the fact that the number of databases we
present in this paper is small, we believe that our
results are valid for three reasons: First, ACL 1–
ACL 4 come from real edge routers or corporate
intranets. ACL 3 in particular comes from the net-
work of a very well known large ISP. Second, the
properties of ACL 1–ACL 4 which justify the effi-
ciency of our approach have been observed in sev-
eral other ACLs which cannot be disclosed in this
paper. Third, we have been able to associate these
properties with standard network administration
practices and therefore argue that these properties
are likely to characterize many different databases.
Table 3
Memory requirements of the Cross Producting and MSFM
schemes (in KB)

Number
of rules

Cross
Producting
(total)

MSFM
(primary
table)

MSFM
(tries and
secondary
tables)

Data
structure
size
reduction
(%)

ACL 1 754 87.7 74.4 11.2 2.4
ACL 2 607 160.1 79.8 14.4 41.2
ACL 3 2399 900.2 167.4 35.1 77.5
ACL 4 157 9.5 0.3 3.7 57.9
From the results of Table 5 it is evident that
MSFM results in significant reduction of the lookup
data structure size, which is as high as 77.5% in the
third database. Since there were no collisions in the
entries of the hash tables we constructed we used
exactly one processor word to represent each table
entry. Each processor word is four bytes in our
implementation. In the general case, if some colli-
sions occur for some databases, then the prefix
index values which result in such collisions can be
changed so that collisions are avoided. Avoiding
collisions is possible in our scheme for two reasons:
First, the filters of each database are known in
advance or at least during the rule update phase.
Second, the prefix indexes which are used for access-
ing the hash tables of MSFM are set to arbitrary
values.

Fig. 11 shows the distribution of the number of
indicator filters for the four databases we experi-
mented with. Most fully-specified filters or fully-
specified filter intersections do not contain indicator
filters. The fraction of filters that do not contain
indicator filters ranges from 57.6% in ACL 3 to
92.6% in ACL 4. This is the main reason why
MSFM results in significant reduction of the lookup
data structure size as shown in Table 3. It is also evi-
dent from Fig. 11 that there exist a small number of
filters which include a significant number of indica-
tor filters. For example, only two filters include as
many as 18018 indicator filters in ACL 1. Hence,
it is evident that the MSFM scheme may not work
efficiently if some filters in databases include exces-
sively many indicator filters. In the databases we
experimented with, such filters are only but a few.
These filters are characterized by small prefix
lengths either in the source or the destination
dimension spanning more than one IP address
per fully-specified filter or fully-specified
filter intersection (%)

0

10

20

30

40

50

60

70

80

0 2 5 10 20 40 79 158 316 630 1258 25115011

number of indicator filters

ACL1
ACL2
ACL3
ACL4

Fig. 11. Distribution of the number of indicator filters.

Table 4
Memory requirements of the Cross Producting and the improved
MSFM schemes (in KB)

Cross
Producting
(total)

Improved
MSFM
(primary
table)

Improved
MSFM
(tries and
remaining
lookup
tables)

Data
structure
size
reduction
(%)

ACL 1 754 87.7 15.7 11.2 69.3
ACL 2 607 160.1 45.6 14.5 62.5
ACL 3 2399 900.2 144.4 35.3 80.0
ACL 4 157 9.5 0.3 3.7 57.9

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4965
domains. These filters span multiple IP address
domains because they describe generic administra-
tion policies. We call these filters ‘wide filters’ in this
document. We found that there are 2 wide filters in
ACL1, 8 wide filters in ACL 2, 15 wide filters in
ACL 3 and no such filters in ACL 4.

Our observations on the distribution of the num-
ber of indicator filters, shown in Fig. 11 motivate an
improvement on the most specific filter matching
scheme. We can specify a bound on the number of
indicator filters which can be stored for a fully-spec-
ified filter or a fully-specified filter intersection. Fil-
ters which include more indicator filters than a
specified bound are removed from the primary table
and placed in a separate lookup data structure. This
lookup data structure can be implemented as a
Cross Producting table. The lookup process can
be modified allowing each LPM search to return
three indexes as opposed to two with little penalty
to the performance of the classifier. The first two
indexes returned are associated with a fully- and a
partially-specified filter as in the regular MSFM
algorithm description. The third index, if returned,
is associated with a filter removed from the primary
table because of containing excessively many indica-
tor filters. Such filter is a wide filter. The Cross Pro-
ducting table containing wide filters is accessed in
parallel with the primary and secondary tables.
The lookup process determines the most specific fil-
ter for the packet as in the regular MSFM algorithm
description. The order in which tables are accessed
is the following. First, the primary table is accessed.
If the primary table contains no entry for the packet
which is classified, then the wide filter table is
accessed. If the wide filter table contains no entry
for the packet which is classified, then the secondary
tables are accessed. If the queries on the secondary
tables fail as well, then the most specific filter for
the packet is (*,*).

Table 4 indicates that the improved MSFM
scheme results in significant decrease of the memory
requirement of access control lists ACL 1 and ACL
2. For ACL 1, the data structure size reduction
becomes 69.3%. For ACL 2, the data structure size
reduction becomes 62.5%. Finally, for ACL 3, the
data structure size reduction becomes 80.0%. The
bound we used for distinguishing between regular
and wide filters was 200 indicator filters.

Apart from large databases like ACL 1–ACL 4
there exist some for which the memory requirement
of MSFM is close to Cross Producting. Specifically,
we observed that for some small databases (less than
100 rules) the impact of MSFM on the memory
requirement of the classifier is diminished. These
databases are used in corporate intranets for local
access control and contain exceedingly many par-
tially specified or wide filters. For these databases
the overall memory requirement is small. Hence a
two stage scheme like the one proposed in this paper
is feasible for these databases as well.
5.4. Transport level sharing (TLS)

5.4.1. Design issues

To design an efficient scheme for checking trans-
port level fields we exploit the fact that most rules
that specify the same source destination IP prefix
pair occupy adjacent priority levels in real databases
(i.e., these rules are inserted sequentially in the dat-
abases). We find that, not only there is sharing char-
acterizing the sets of transport level fields of the
rules specifying the same source–destination IP pre-
fix pair, but also there is sharing characterizing the
sets of the rules specifying the same source–destina-
tion IP prefix pair at adjacent priority levels. In
what follows, we use the term ‘rule-set’ to refer to
the set of rules that specify the same source–destina-
tion IP prefix pair. By ‘distance’ of a rule-set we
mean the maximum difference between the priority
levels of any two rules in a rule-set divided by
the number of rules in the rule-set. Obviously, the
rule-set distance is one measure that indicates the
proximity of the priority levels of the rules in
the same rule-set. Table 5 shows the distance distri-
bution for all rule-sets in the four databases we
experimented with.

The results of Table 5 indicate that most rule-sets
have distance equal to 1 in real databases. The
intuition behind this observation is that network
administrators add rules specifying the same
source–destination pair (i.e., the same network

Table 5
Rule-set distance distribution

Rule-sets
having distance
equal to one (%)

Rule-sets having
distance between
1 and 100 (%)

Rule-sets having
distance greater
than 100 (%)

ACL 1 99.1 0.9 0
ACL 2 97.7 1.6 0.7
ACL 3 86.4 7.2 6.4
ACL 4 80.6 18.4 1

Table 7
Rule-set distance distribution after reordering

Rule-sets
having distance
equal to one (%)

Rule-sets having
distance between
1 and 100 (%)

Rule-sets having
distance greater
than100 (%)

ACL 1 100 0 0
ACL 2 99.6 0 0.4
ACL 3 98.7 0 1.3
ACL 4 99 0 1

4966 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
path) sequentially at consecutive priority levels. We
also observe in Table 5 that a small fraction of rule-
sets have distance greater than one ranging between
1 and 100. Another fraction of the rule-sets have
very large distance greater than 100, which is in
the order of the number of rules in the database.

Rule-sets that have distance which is small but
greater than one are created by interleaving the rules
associated with the same application but with differ-
ent source–destination IP prefix pairs. For example
rules may be interleaved as shown in Table 6.

To exploit transport level sharing we reduce the
distance for some rule-sets. To reduce the distance
for some rule-sets (and to increase the proximity
of the priority levels of their rules) we change the
order of some elements in the database so as to
make sure that interleaved rules occupy adjacent
priority levels in databases. The reordering algo-
rithm which is part of the update process is the fol-
lowing: We move each new rule ‘up’ or ‘down’ the
priority list as long the rules below or above specify
a different IP prefix pair and do not overlap. We
stop when we find an adjacent rule that has the same
source–destination IP prefix pair as the new rule. If
we do not find any such rule the new rule is inserted
at its original priority level. Reordering reduces the
distance for some sets significantly as shown in
Table 7.
Table 6
Interleaved rules

Src. IP
address

Dest. IP
address

Src.
port

Dest.
port

Action Priority

128.59.* 132.12.* * www Permit n

147.102.* 12.45.* * www Permit n + 1
134.22.* 221.34.* * www Permit n + 2
128.59.* 132.12.* * ftp Permit n + 3
147.102.* 12.45.* * ftp Permit n + 4
134.22.* 221.34.* * ftp Permit n + 5
128.59.* 132.12.* * telnet Permit n + 6
147.102.* 12.45.* * telnet Permit n + 7
134.22.* 221.34.* * telnet Permit n + 8
In what follows we present an example of how
our reordering algorithm works: Consider the rule
(128.59.*,132.12.*,*, ftp,permit) at priority level
n + 3 in Fig. 7. For this rule the reordering algo-
rithm would consider moving its priority level up
by one position and placing it at level n + 2. The
rule at level n + 2 (134.22.*,221.34.*,*,www,per-
mit) does not overlap with (128.59.*,132.12.*,

*, ftp, permit). Several fields of these two rules
(e.g., their source IP prefixes) are disjoint. Because
of this reason the algorithm considers moving the
priority level of the rule (128.59.*,132.12.*,

*, ftp, permit) further up by one position and placing
the rule at level n + 1. The rule at level n + 1
(147.102.*,22.45.*,*,www, permit) does not overlap
with (128.59.*,132.12.*,*, ftp,permit). Because of
this reason the algorithm considers moving the pri-
ority level of the rule (128.59.*,132.12.*,*, ftp, per-
mit) up by even one more position and placing the
rule at level n. The rule at level n, specifies the same
source destination IP prefix pair as (128.59.*,
132.12.*,*, ftp,permit). Because of this reason the
algorithm stops. The rule is placed at priority level
n + 1 and the rules at priority levels n + 1 and
n + 2 move by one position down at levels n + 2
and n + 3 respectively.

Since the majority of the rule-sets have distance
equal to one and source–destination IP pairs exhibit
transport level sharing, it is expected that the sets
of transport level fields resulting from grouping
together the rules that have the same source–destina-
tion prefix pairs and occupy adjacent priority levels
in the database are also shared. This is an interesting
observation which we exploit in our design. The size
distribution of sets of transport levels fields formed
from adjacent rules that specify the same IP prefix
pair after reordering is shown in Fig. 12. The level
of sharing associated with these sets is shown in
Table 8.

The most specific filter returned from stage 1 is
associated with a union of shared sets of transport
level fields. These sets correspond to the rules that

Table 8
Level of sharing associated with sets of transport level fields

Number of
source–
destination
IP prefix pairs

Number of
unique sets of
transport
level
fields

Number of entries
in unique sets of
transport level
fields

ACL 1 426 102 316
ACL 2 527 35 68
ACL 3 1588 186 437
ACL 4 98 8 47

size distribution of shared sets
of transport level fields (%)

0

10

20

30

40

50

60

70

80

1 3 5 7 9

number of entries

ACL1

ACL2

ACL3

ACL4

size distribution of shared sets
of transport level fields (%)

0

10

20

30

40

50

60

70

80

11 13 15 17 19 21 23 25 27 29 31 33 35 37

size distribution of shared sets
of transport level fields (%)

0

10

20

30

40

50

60

70

80

ACL1
ACL2

ACL3

ACL4

Fig. 12. Size distribution of shared sets of transport level fields.

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4967
cover the most specific filter returned by MSFM.
While the entries of sets of transport level fields
may have arbitrary priorities inside their unions,
the entries of sets constructed by grouping rules at
adjacent priority levels are associated with consecu-
tive priority levels inside their unions. As a result, it
is sufficient to associate the most specific filter
returned from stage 1 with an ordered list of shared
sets of transport level fields. In one of our imple-
mentations (see below) 11 pointers of 16 bits each
are sufficient for describing the ordered lists of sets
of transport level fields returned from MSFM after
reordering. These pointers occupy a total space of 6
words and can be fetched in a single memory access
time.

5.4.2. Algorithm description

In this section we describe our classification algo-
rithm for transport level fields. We call our algo-
rithm Transport Level Sharing (TLS) from the
basic property of transport level fields which our
algorithm exploits. TLS consists of two stages: A
preprocessing stage and a lookup stage. The prepro-
cessing stage takes place every time the classifier’s
data structure is rebuilt. The lookup stage takes
place every time a packet enters a router.
Preprocessing:

Step 1: Rules that specify the same source–destina-
tion IP prefix pair and occupy adjacent pri-
ority levels in the database are grouped
together.

Step 2: The transport level fields of the groups of
rules formed by Step 1 are identified.

Step 3: The unique instances of all sets formed by
Step 2 are identified and placed in a special-
ized hardware acceleration unit capable of
checking the entries of each set in parallel.

Step 4: Each of the filters returned from the stage
of source–destination IP address classifica-
tion is associated with an ordered list of
pointers to unique instances of sets of
transport level fields. These sets correspond
to the rules that cover each filter returned
by MSFM.

Lookup:

Step 1: MSFM is executed first. MSFM returns an
ordered list of pointers that activate a
selected subset of the shared sets of trans-
port level fields stored in the hardware unit.
The ordered list of pointers is sent to the
hardware unit and the hardware unit
returns the action associated with the high-
est priority match.

TLS is associated with O(1) lookup time com-
plexity provided that (i) the list of pointers returned
from MSFM can be fetched with a small number of
memory accesses; (ii) a specialized hardware unit
can check the entries of each selected set in parallel.
The first assumption is valid in real world databases
because each packet is usually covered by no more
than 7 IP prefix pairs [16] and because the distance
of most rule-sets is equal to 1. To investigate the
validity of the second assumption we evaluated a
number of possible alternative ways to accelerate
Transport Level Sharing in hardware. Our alterna-
tives include ‘single bin’ and ‘multiple bins’ range
matching accelerators and off-the-shelf TCAMs.

5.4.3. Hardware acceleration of TLS

TLS can be accelerated in hardware in three dif-
ferent ways. In one implementation a specialized
hardware acceleration unit consists of sets of com-
parator entries called ‘bins’. Each entry in a bin con-
sists of a number of binary comparators that can

4968 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
perform range matching checks in the source and
destination port number dimensions and exact value
matching checks in the protocol field dimension. A
priority encoder attached to a bin returns an index
and action value associated with the highest priority
match. In this implementation each bin stores a dif-
ferent set of transport level fields. The MSFM algo-
rithm returns an order list of pointers to bins and
the hardware unit activates the bins selected by
MSFM from its stored set. The hardware unit
returns the highest priority match from the order
specified by MSFM. Such hardware unit is illus-
trated in Fig. 13. The main advantage of this
approach is that transport level fields are stored in
the hardware acceleration unit at the preprocessing
phase. As a result MSFM needs to return only
pointers to transport level fields as opposed to the
values of the transport level fields themselves. Hence
the memory access bandwidth requirement of this
implementation can be kept small as shown in the
evaluation section. The main disadvantage of this
approach is the complexity of the priority resolution
bin #1

bin #2

bin #3

bin #4

…

list of pointers

MSFM

match

priority
resolution

TLS hardware

Fig. 13. Multiple bins hardware implementation.

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

Regular TCAM
check

“ match ”

done in software
key shifter &

mask
16 bits 16 bit

range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits
Regular TCAM

check

“ match ”

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

Regular TCAM
check

“ match ”

done in software
key shifter &

mask
16 bits 16 bit

range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits
Regular TCAM

check

“ match ”

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

Regular TCAM
check

“ match ”

done in software
key shifter &

mask
16 bits 16 bit

range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits
Regular TCAM

check

“ match ”

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

Regular TCAM
check

“ match ”

done in software
key shifter &

mask
16 bits 16 bit

range matching

key shifter &
mask

16 bits 16 bit
range matching

key shifter &
mask

16 bits
Regular TCAM

check

“ match ”

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

comparator

key (16 bits) lower bound

key upper bound

borrow

borrow
comparator

comparator

key (16 bits) lower bound

borrow

borrow

m

comparator

Fig. 14. Single bin hardw
circuit which needs to be attached to the bins of the
hardware unit.

An alternative approach sacrifices the memory
access bandwidth efficiency for the ease of imple-
mentation. The custom hardware acceleration unit,
shown in Fig. 14, helps with checking a limited
number of entries in parallel (i.e., the entries of a
single bin of the previous approach) but contains
a single ‘bin’ only. The arrows in the figure show
how a specific hardware building block (e.g., a range
matching unit) is being implemented. The basic
hardware building block of this unit is a comparator
circuit. The comparator circuit consists of a subtrac-
tor that compares the key passed (i.e., a port num-
ber value) against an upper or lower bound value.
In this implementation transport level field entries
are copied from an external memory unit into the
accelerator during the lookup process. Although
copying transport level field entries can ideally take
place in a single step after MSFM, this approach
imposes higher memory access bandwidth require-
ment than the previous approach because it requires
the physical transfer of port number range values
and protocol fields from an external memory unit
into the custom hardware.

A third implementation choice reduces both the
memory access bandwidth and the complexity of
implementation at the cost of the space required
for storing transport level field sets. This implemen-
tation uses an off-the-shelf TCAM unit for storing
transport level fields.

This approach is illustrated in Fig. 15. Each
unique instance of a shared set of transport level
fields is placed in an off-the-shelf TCAM unit. The
port number ranges of the transport level field
entries in each set are expanded into prefixes. Before
bin #1
(e.g., 13 entries)

bin #2
(e.g., 4 entries)

bin #3
(e.g., 7 entries)

…

…

fast memory
entries

16 entry
comparator

circuit

set #1
(e.g., 13 entries)

set #2
(e.g., 4 entries)

set #3
(e.g., 7 entries)

…

…

entries

16 entry
comparator

circuit

atch”atch”

bin #1
(e.g., 13 entries)

bin #2
(e.g., 4 entries)

bin #3
(e.g., 7 entries)

…

…

fast memory
entries

comparator
circuit

set #1
(e.g., 13 entries)

set #2
(e.g., 4 entries)

set #3
(e.g., 7 entries)

…

…

entries

single bin
comparator

circuit

atch”atch”

bin #1
(e.g., 13 entries)

bin #2
(e.g., 4 entries)

bin #3
(e.g., 7 entries)

…

…

fast memory
entries

16 entry
comparator

circuit

set #1
(e.g., 13 entries)

set #2
(e.g., 4 entries)

set #3
(e.g., 7 entries)

…

…

entries

16 entry
comparator

circuit

atch”atch”

bin #1
(e.g., 13 entries)

bin #2
(e.g., 4 entries)

bin #3
(e.g., 7 entries)

…

…

fast memory
entries

comparator
circuit

set #1
(e.g., 13 entries)

set #2
(e.g., 4 entries)

set #3
(e.g., 7 entries)

…

…

entries

single bin
comparator

circuit

atch”atch”

are implementation.

shared sets of
transport level fields

shared sets of transport
level fields in a total order

TCAM

Fig. 15. Off-the-shelf TCAM implementation.

1 2 6 5

3 7 5

6 5

6 2

possible lists
returned from MSFM

creation of the total order:

Step 1: 1 2 6 5

Step 2: 1 2 6 53 7

Step 4: 1 2 6 53 7 copy
of2

Step 3: no change

Fig. 16. Creating a total order between shared sets of transport
level fields.

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4969
inserting transport level field sets into the TCAM a
total order is defined for the sets of transport level
fields satisfying the way entries are prioritized in
each MSFM match. In this way the TCAM unit
can determine the highest priority match for a given
packet.

5.4.4. Defining a total order for sets of transport level

fields

To create a total order between shared sets of
transport level fields one can use an easy to imple-
ment greedy algorithm, which operates as follows:
The algorithm initializes a totally ordered set of
transport level field sets O to one list of sets of trans-
port level fields returned from MSFM: O O1 ¼
fL1

1; L
1
2; L

1
3; . . . ; L1

mg chosen arbitrarily. By Li
j we

denote the jth set of transport level fields of the ith

ordered list returned from MSFM. The algorithm
sets a variable called insert-index equal to 1. For
every possible ordered list of sets that can be
returned from MSFM Oi, the totally ordered set
O = {L1,L2,L3, . . . ,Ln} is updated as follows: Let
k be the smallest index such that

insert index 6 k 6 n ð11Þ
and

Lk ¼ Li
1: ð12Þ

If such k exists then the algorithm sets insert-

index to be equal to k + 1. Otherwise the algorithm
inserts the set of transport level fields Li

1 at position
insert-index and increments the index insert-index by
one. The previous step is repeated until all elements
of the ordered list Oi have been taken into account.
When the algorithm finishes processing the ordered
list Oi, it sets the variable insert-index equal to 1
again.

An example is shown in Fig. 16. In the example
of Fig. 16, MSFM returns one of four lists of trans-
port level field sets: {1, 2,6,5}, {3,7,5}, {6,5} or
{6,2}. In this example we use integers to refer to
transport level field sets for the sake of simplicity.
In the first step the algorithm sets the totally
ordered set O to be equal to {1,2,6,5}. Adding
the elements of {3,7,5} into the set O results in
inserting the elements 3 and 7 into O at position
1. The element 5 is not inserted since 5 is already
an element of O. With the addition of 3 and 7 the
set O becomes {3,7,1,2,6,5}. Similarly one can
see that the elements of {6,5} are not inserted into
O because these elements already exist in O. Finally,
the element 2 of the set {6, 2} is replicated. The total
order between the sets of transport level fields
returned from MSFM is {3,7,1,2,6, copy of 2,5}.

Our greedy algorithm creates a total order
between all pointers returned from MSFM by repli-
cating some sets of transport level fields in the
TCAM unit. Once the total order O is created, the
sets of transport level fields in the TCAM unit can
be used for classification in the transport level
dimensions without any additional priority resolu-
tion mechanism other than what is supported by
the off-the-shelf TCAM.
5.4.5. Creating an index for TCAM entries
Creating a total order between the sets of trans-

port level fields stored in the TCAM unit is not suf-
ficient to make the TCAM solution work. The lists
of pointers returned from MSFM need to be
encoded into a small number of bits. These bits need
to be appended into the key which is sent to the
TCAM unit once MSFM returns a match. These
bits are used for enabling the entries of the transport

4970 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
level field sets returned from MSFM only and not
other entries. This is important for having a func-
tionally correct classifier. This problem can be for-
mulated as follows: We have a collection of sets of
transport level fields identified by pointers L1,L2,
. . . ,Lm and a number of ordered lists of pointers
Oi ¼ fLi

1; L
i
2; . . .g returned from MSFM where Li

j

points to one of {L1, . . . ,Lm}. We want to create
an index I(Oi) such that if this index is appended
into a key sent to a TCAM, then this key enables
only the entries of the sets of transport level fields
which are elements of Oi.

Our approach to solve the problem is the follow-
ing. Since each set needs to be enabled by an index,
each set must specify some relevant bits in the index
and some values for these relevant bits. All the
entries in the set must specify the same relevant bits
and values. The naı̈ve approach to produce the
index would be to allocate a separate bit for every
set in the index. This approach, however, would eas-
ily make the length of an index exceed the length of
an entry of a commercial TCAM. We believe that
we can do better. Since each value of the index needs
to enable multiple sets at the same time, the sets
which are simultaneously enabled need to specify
values at different bits of the key. For this reason
any two sets identified by pointers Li, Lj must spec-
ify values at different bits of the index if and only if
there exists an ordered list of pointers returned from
MSFM that includes both Li and Lj. If any two
pointers Li and Lj are not found in the same ordered
list, then their corresponding sets of transport level
fields can specify different values at the same bits
of the key. This can happen because there is no
ordered list of pointers that enables both of these
sets simultaneously.

Because of these observations, the bits of the
index can be divided into regions r1, r2, . . . , rl. In
each region ri a number of values equal to jrij is
specified, each one for a separate set of transport
level fields plus a ‘don’t enable’ value. By jrij we
mean the cardinality of the set of values specified
in the region ri. Each set of transport level fields
specifies a value in one region only. The entries of
the set mark the bits of this region as relevant and
the bits of all the other regions as irrelevant. How-
ever, more than one set may specify values in the
same region of the index as mentioned above. The
total number of bits needed to represent the index is:

S ¼
X

i

dlog2jrije: ð13Þ
The lists of pointers O1,O2, . . . returned from
MSFM can be used for constructing an m · m

matrix R, where m is the maximum number of sets
of transport level fields in a total order. The matrix
R is constructed in the following manner: Rij = 1, if
an ordered list O exists that includes both pointers
Li, Lj. Otherwise Rij = 0. Therefore the index crea-
tion problem can be transformed into the following
mathematical problem: Given a set of elements
L1,L2, . . . ,Lm and an m · m matrix R we want to
partition the set into subsets I1, I2, . . . of cardinalities
jI1j, jI2j, . . . so that the following conditions hold:
First, for any pair Li, Lj for which Rij = 1, the ele-
ments Li and Lj are not grouped in the same set.
Second, the sum S defined above is minimized,
where

jrij ¼ jI ij þ 1: ð14Þ

The plus one in the identity above corresponds to
the ‘don’t enable’ value specified for the region ri.

To solve this problem we use a heuristic algo-
rithm that calculates sets I1, I2, . . . by taking into
account that many ordered lists include the same
elements either in their beginning or in their end.
The elements which are in common usually repre-
sent sets of transport level fields extracted from par-
tially-specified filters. Such filters describe policies
that apply to all traffic associated with a source or
destination (e.g., forward all packets associated with
established TCP connections). While ordered lists
have some elements in common, ordered lists do
not contain a large number of elements in average.
For example the maximum size of each ordered list
returned from MSFM is 11, in the databases we
experimented with as mentioned earlier. These
observations motivate the design of a greedy heuris-
tic algorithm for calculating sets I1, I2, . . . which
operates as follows:

Initially, the algorithm determines which ele-
ments are common to all ordered lists. These ele-
ments are removed from the ordered lists and are
not placed in the partition {I1, I2, . . .}. These ele-
ments correspond to sets of transport level fields
which are always enabled when a match is found
by MSFM. Then, the algorithm sets the partition
{I1, I2, . . .} equal to ffLi

1g; fLi
2g; . . .g where Li

1, Li
2

are the elements of the ordered list Oi ¼
fLi

1; L
i
2; L

i
3; . . . ; Li

mg that has the maximum number
of elements. Next, the algorithm sets a variable
called insert-index equal to 1. Subsequently, the
algorithm determines the ordered list Oj ¼
fLj

1; L
j
2; . . .g that has the maximum number of new

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4971
elements (i.e., elements that have not been included
in any partition before). The partition {I1, I2, . . .} is
updated as discussed below: Let k be the smallest
index greater than or equal to insert-index such that
Ik contains Lj

1. If k exists the algorithm sets insert-

index equal to k + 1. Else the algorithm checks if
the set Ik contains at least one element that cannot
be represented in the same region of the index as
Lj

1. If Ik does not contain any such element, then
the algorithm inserts the element Lj

1 in the set Ik

and increments the variable insert-index by one. If
Lj

1 cannot be inserted in Ik then the algorithm deter-
mines the smallest index l P k of a set Il where the
element Lj

1 can be inserted. The algorithm inserts
Lj

1 in the set Il and sets the index insert-index vari-
able equal to l + 1. The previous step is repeated
for all elements of the ordered list Oj and for all
other ordered lists until all elements have been
inserted in the partition.

An example of the operation of our heuristic
algorithm is illustrated in Fig. 17. This example of
Fig. 17 follows the example of Fig. 16. In the exam-
ple, the initial partition is {1}, {2}, {6}, {5}. The
addition of the ordered list {3,7,5} changes the par-
tition to {1,3}, {2,7}, {6}, {5}. In the last step of the
algorithm the ordered list {6, copy of 2} is added
and the partition becomes {1, 3}, {2,7}, {6},
{5, copy of 2}. To understand why such a partition
can be used for creating an index that enables the
correct transport level field entries in the TCAM,
1 2 6 5

3 7 5

6 5

6 copy
of 2

possible lists
returned from MSFM

step1: initial partition

1{ {

1{ {

2{ {

2{ {

6{ {

6{ {

5{ {

5{ {

step 2:

1{

{

3 2{

{

7 6{ {

6{ {

5{ {

5{ {

step 3:

1{

{

3 2{

{

7 5{ {

6{ { copy
of 2

index length = 2 + 2 + 2 +1 = 7 bits

Fig. 17. Creating an index for TCAM entries.
let us consider what happens when MSFM returns
the ordered list {3,7,5}. The index associated with
this ordered list specifies the value for the set 3 in
the first region of the index, the value for the set 7
in the second region of the index, the ‘don’t enable’
value in the third region (to skip the transport level
field set 6) and the value for 5 in the last index
region. In this way the correct TCAM entries are
enabled.

The intuition behind this algorithm is that when
we add the elements of a new ordered list into the
partition, some elements in the new ordered list
are likely to be found in the partition already.
Therefore we do not to add these elements again.
In addition for every new element, there is great
likelihood that we can find an existing set in the par-
tition where the new element can be inserted. All the
elements in this set are represented by the same bits
in the index. Hence, it is expected that the total
number of bits needed to represent the sets of the
partition (which is equal to the sum S above) is
not going to be as large as the number of elements.
For the access control lists we experimented with
the length of the index ranged from 9 to 44 bits.

6. Evaluation

To evaluate our approach we compared it against
a number of well known classification algorithms
described in the literature. Comparing algorithm
implementations is difficult since the performance
of implementations varies depending on how imple-
mentations are optimized. For the schemes pre-
sented here, we have either used source code
available in the public domain or re-implemented
the schemes as described in their respective publica-
tions. Our implementations were done the ‘straight-
forward way’. Even though our results may not
demonstrate the most optimal performance for
some of the state-of-the-art algorithms they can be
used for qualitative comparison showing the basic
property of our approach which is classification in
predictable number of steps with reasonable mem-
ory requirement.

From among the parallel bit vector algorithms
we implemented the Bit Vector (BV) and Aggregate
Bit Vector (ABV) techniques described in [4,13]
respectively. From among the heuristic algorithms
we implemented the Recursive Flow Classification
algorithm supporting the system configurations
described in [7]. From among the hash-based algo-
rithms we implemented the Tuple Space Search

Table 10
Memory requirement (expressed in KB)

Number
of rules

TSS RFC

ACL 1 754 249 1274
ACL 2 605 600 562
ACL 3 2399 1058 2044
ACL 4 157 54 367

ABV EGT

ACL 1 754 510 183
ACL 2 605 266 188
ACL 3 2399 2988 538
ACL 4 157 12 22

HiCuts HyperCuts

ACL 1 754 42 38
ACL 2 605 253 40
ACL 3 2399 635 65
ACL 4 157 13 4

MSFM/TLS, without
HW acceleration

MSFM/TLS,
with a single bin

ACL 1 754 58 58
ACL 2 605 175 175

4972 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
algorithm described in [9]. From among the family
of multidimensional trie algorithms we used the
extended Grid-of-Tries (EGT) implementation
found in [18]. From among the hierarchical cutting
schemes we implemented the HiCuts [8] and Hyper-
Cuts [17] schemes.

We evaluated the combination of the improved
most specific filter matching (MSFM) scheme and
the Transport Level Sharing (TLS) scheme, imple-
mented in four different ways: (i) without hardware
acceleration (ii) with a custom hardware unit con-
sisting of a single bin (iii) with a custom hardware
unit consisting of multiple bins (iv) using an off-
the-shelf TCAM unit.

Our evaluation results are presented in Tables 9–
11. Table 9 shows the memory requirements of the
classification schemes considered. Table 10 shows
the number of dependent memory accesses involved
in the lookup process of each algorithm. By ‘mem-
ory accesses’ in this context we mean dependent
read or write operations that can fetch or write
Table 9
Lookup time comparison, expressed in worst case dependent
memory accesses

Number of
rules

TSS RFC

ACL 1 754 83 10
ACL 2 605 200 10
ACL 3 2399 361 10
ACL 4 157 18 10

ABV EGT

ACL 1 754 10 84
ACL 2 605 10 136
ACL 3 2399 13 150
ACL 4 157 9 108

HiCuts HyperCuts

ACL 1 754 28 15
ACL 2 605 33 19
ACL 3 2399 37 25
ACL 4 157 25 14

MSFM/TLS, without
HW acceleration

MSFM/TLS,
with a single bin

ACL 1 754 11 11
ACL 2 605 11 11
ACL 3 2399 11 11
ACL 4 157 11 11

MSFM/TLS, with
multiple bins

MSFM/TLS,
with a TCAM

ACL 1 754 11 11
ACL 2 605 11 11
ACL 3 2399 11 11
ACL 4 157 11 11

ACL 3 2399 446 446
ACL 4 157 19 19

MSFM/TLS, with
multiple bins

MSFM/TLS,
with a TCAM

ACL 1 754 31 29
ACL 2 605 74 67
ACL 3 2399 213 197
ACL 4 157 6 5
one or multiple words at the same time to/from
memory. The number of memory accesses is not
the same as the number of words read during the
lookup process of an algorithm. The number of
memory accesses is simply the number of dependent
steps involved in the lookup process. Table 11
shows the memory access bandwidth requirement
of each algorithm. By memory access bandwidth
we mean the maximum number of words that need
to be fetched or written in a single memory access or
dependent step of an algorithm.

Table 10 indicates that our scheme requires no
more than 11 sequential memory accesses indepen-
dent of the size of the database in all possible imple-
mentations. The number 11 comes from the number
of dependent steps required for traversing two 4-bit
trie data structures in parallel (8) plus one more
dependent step for accessing the tables of MSFM
plus two more dependent steps for classifying pack-
ets in the transport level field dimensions. Classifica-
tion on the transport level field dimensions depends
on the flavor of MSFM/TLS which is being imple-

Table 11
Memory access bandwidth comparison, expressed in worst case
words fetched/written per accesses

Number
of rules

TSS RFC

ACL 1 754 1 1
ACL 2 605 1 1
ACL 3 2399 1 1
ACL 4 157 1 1

ABV EGT

ACL 1 754 1 1
ACL 2 605 1 1
ACL 3 2399 1 1
ACL 4 157 1 1

HiCuts HyperCuts

ACL 1 754 1 1
ACL 2 605 1 1
ACL 3 2399 1 1
ACL 4 157 1 1

MSFM/TLS, without
HW acceleration

MSFM/TLS,
with a single bin

ACL 1 754 64 64
ACL 2 605 64 64
ACL 3 2399 64 64
ACL 4 157 64 64

MSFM/TLS, with
multiple bins

MSFM/TLS, with
a TCAM

ACL 1 754 8 4
ACL 2 605 8 4
ACL 3 2399 8 4
ACL 4 157 8 4

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4973
mented. In the case of MSFM without hardware
acceleration this step returns the values of the port
number ranges and protocol fields used in the sec-
ond stage of the packet classification process. This
information if appropriately compressed (e.g.,
source port numbers are almost always equal to
the wildcard) can be represented using at most 64
words. This information is processed in software.
In the case of MSFM with singe bin hardware accel-
eration this step also returns the same information.
However, this time transport level field values are
sent to a hardware accelerator instead of being pro-
cessed in software. In the case of MSFM with multi-
ple bins the information sent to the hardware
accelerator is a list of bin pointers. This information
is at most 8 words. Finally in the case of MSFM
with TCAM-based acceleration the information
sent to the TCAM unit is a 4 word key.

In our implementation we avoid storing trans-
port level field information (either field values or
pointers) inside the MSFM tables, in order to keep
their size small. MSFM tables return just a pointer
to some memory area where transport level field
information can be obtained. One can see that in
all flavors of MSFM/TLS transport level field clas-
sification requires two dependent steps, hence the
number 11. What differentiates implementations is
their memory access bandwidth requirement. The
software-only implementation requires 8 times more
memory access bandwidth than the flavor of
MSFM/TLS with multiple bins and 16 times more
memory access bandwidth than the flavor of
MSFM/TLS with a TCAM. The most optimal
implementation of MSFM/TLS is with an off-the-
shelf TCAM even though this implementation
requires extra TCAM space for storing transport
level fields.

The only other scheme which also appears to be
associated with constant time requirement is RFC.
Unlike RFC however, our scheme avoids significant
increases in the lookup data structure size because
many cross products are removed form the lookup
table and because the unique instances of transport
level field entries, which are a few, are stored only
once in a specialized hardware unit.

One of the fastest alternative packet classification
schemes shown in the tables is HyperCuts [17]. It is
shown in Tables 9 and 10 that HyperCuts requires a
variable number of dependent steps (i.e., 14–25) for
classifying packets from our sample databases while
demonstrating smaller memory requirement than
the combination of MSFM and TLS. The time
requirement of multidimensional cutting scheme
depends on the classification database used. This
happens because multidimensional cutting builds a
decision tree of varying height and because the num-
ber of rules which are stored in each leaf node of the
tree varies as well. In contrast, MSFM uses parallel
tries of fixed worst case height. As a result, MSFM
requires the same predictable number of steps for
classifying packets for any database used. On the
other hand one can observe that HyperCuts requires
approximately 3–8 times less memory than MSFM/
TLS which is because HyperCuts does not need to
pay the penalty of storing indicator filters. This is
one of the main advantages of HyperCuts as com-
pared to our approach. The reader should also note
that our HiCuts and HyperCuts implementations
perform a linear search on the list of rules found
after a tree search is complete as described in their
respective papers [8,17]. These implementations
can be optimized reading all rule data from memory
in parallel as our MSFM/TLS implementation does.

Table 12
Properties of a synthetic database of 11,526 rules

Property Value

Number of rules 11,526
Number of unique IP prefix pairs 5824
Number of unique source prefixes 3187
Number of unique destination prefixes 3560
Number of unique (X, *) partially-specified filters 220
Number of unique (*,Y) partially-specified filters 506
Number of shared sets of transport level fields 682
Number of entries in unique sets of transport level

fields
1602

Number of bits read at a time when traversing the
tries

16-8-4-4

Number of 16 entry unique source trie blocks 3102
Number of 16 entry unique destination trie blocks 5174
Number of 256 entry unique source trie blocks 314
Number of 256 entry unique destination trie blocks 434
Number of 64K entry unique source trie blocks 1
Number of 64K entry unique destination trie

blocks
1

Number of unique partial IP prefix pair overlaps 46,028
Number of unique indicator filters 259,794
Type of HW acceleration Multiple

bin
Number of worst case dependent memory accesses 7
Space requirement (MB) 3.8

4974 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
Other optimizations can be thought of that combine
multidimensional cutting in the source–destination
IP address dimensions and transport level sharing
in the remaining dimensions. Such optimizations
however are left for future work.

To verify the scalability of our approach in terms
of supporting constant worst case time requirement
we built a synthetic ACL generator. Using this gen-
erator we created synthetic databases of sizes rang-
ing from 4K to 10K rules satisfying the IP prefix
pair and transport level sharing properties reported
in the literature and discussed in this paper. Our
synthetic ACL generator satisfies many of the prop-
erties of the rules characterizing large classification
databases including (i) the breakdown of filters
between partially- and fully-specified observed in
[16]; (ii) the breakdown of fully-specified filters
between domain–host, host–domain, host–host
and domain–domain filters observed in [16]; (iii)
the breakdown of partially-specified filters between
filters specifying the wildcard in the source and des-
tination addresses characterizing the databases we
experimented with; (iv) the filter overlap properties
reported in [16]; (v) the transport level field sharing
properties reported in Section 3; and (vi) the struc-
ture of the entries of the unique sets of transport
level fields reported in [16].

The ACL generation algorithm is outlined as fol-
lows: First, the algorithm determines the number of
fully- and partially-specified filters in the new syn-
thetic database, the number of unique sets of trans-
port level fields, and the number of unique entries in
the sets of transport level fields in the database. The
algorithm determines these numbers from the
requested number of rules in the new database
and from the observed levels of sharing found in
real databases. Second, the entries of the unique sets
of transport level fields are generated obeying the
properties of protocol fields and port ranges
reported in the literature. Third, the unique sets of
transport level fields are created from synthetically
generated entries obeying the size distributions
observed in the literature and in this paper. Next
partially- and fully-specified filters are generated
satisfying the overlap properties that typically char-
acterize large ISP databases. Finally the ACL is
constructed by combining the generated filters with
the transport level fields.

We observed that the synthetic databases, like
the real databases were associated with a predictable
number memory accesses in the critical path. The
memory requirement for synthetic databases was
between 400 KB and 3.8 MB. The properties of a
synthetic database of 11,526 rules are shown in
Table 12.

Our TCAM-based implementation of the Trans-
port Level Sharing scheme is further analyzed in
Table 13. We observe from Table 13 that the
amount of TCAM entries which are required for
storing the unique instances of sets of transport level
fields in a database is significantly smaller than the
number of entries required for storing the rules of
the entire database. A TCAM that stores the unique
sets of the transport level fields of the databases we
experimented with requires 21.6–65.7% of the
entries of a hardware unit that stores the transport
level fields of all rules in the same databases. We
define the ‘TCAM compression factor’ as the ratio
between the number of TCAM entries required for
storing all the rules in a database over the number
of TCAM entries required for storing the shared
sets of transport level fields in the database.

Fig. 18 illustrates the TCAM compression factor
as a function of the database size for the access con-
trol lists we experimented with. Fig. 13 shows that
the larger a database is the larger TCAM compres-
sion factor the database is associated with. The intu-
ition behind this observation is that the number of

Table 13
Analysis of a TCAM-based implementation

Number of TCAM entries
needed to store the unique
sets of transport level fields

Number of TCAM
entries needed to
store all the rules
in the database

ACL 1 1210 1843
ACL 2 336 1243
ACL 3 947 4387
ACL 4 90 156

TCAM compression factor

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

157 607 2399

number of rules

Fig. 18. TCAM compression factor as a function of the ACL.

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4975
source–destination IP prefix pairs increases at much
higher rate than the number of transport level fields
as the size of the database increases.

The main penalty we pay to support both pre-
dictable lookup time and reduced data structure size
is the complexity of the update process. The update
process is currently time consuming since it requires
the creation of lookup tables, the reordering of
rules, the discovery of shared sets of transport level
fields and the creation of the data structures used by
the hardware accelerator. Some of the data struc-
tures used by the update process are dynamically
created during by the classifier when bursts of new
rules are added and hence they do not need to be
maintained over the course of the system’s opera-
tion. The additional data structures which are cre-
ated dynamically include a conflict resolution trie
[19] in order to determine the unique overlaps
between IP prefix pairs and modified versions of
the tables of the lookup process in order to deter-
mine new indicator filters. The classifier modifies
the tables of the lookup process during the update
time in order to correctly determine the indicator fil-
ters associated with every new IP prefix pair. In
these modified lookup tables each table entry does
not only contain a pointer to transport level sharing
data but also the indicator or most specific filter
associated with the entry. Details about our update
process are provided in the Appendix.

The largest worst case update latency was found
to be 197 thousand memory accesses for adding a
new rule into ACL3 and 103 million memory acces-
ses for creating all lookup data structures of ACL3.
These numbers indicate that our classifier is not
suitable for highly dynamic networking environ-
ments where new rules need to be added into classi-
fiers over intervals smaller than the millisecond time
frame. Our update latency is also larger than the
update latency of other well known classification
schemes. In the case of HyperCuts for example, an
update can be performed by adding a new rule into
an existing search tree without recreating the tree.
Thus the update time does not exceed the time to
traverse the tree and the linear list of rules, which
is 14–25 memory accesses (from Table 9). Similar
to HyperCuts our scheme can be modified to sup-
port fast update times at the expense of the optimal-
ity of the lookup algorithm and data structure. A
modified version of our scheme could find all possi-
ble matches for a packet in the source–destination
IP address dimensions using any suitable tree struc-
ture and then use transport level sharing to perform
classification in the remaining dimensions. Such
optimization, however, is the subject of future work.

7. Concluding remarks

In this paper we described a hybrid scheme,
where a parallel LPM lookup algorithm imple-
mented in software determines the most specific fil-
ter for a packet and a specialized hardware unit
determines if the packet matches any of the trans-
port level fields of a database. The most significant
contribution of our work is that our scheme can
classify packets in a small and predictable number
of steps which is independent of the number of rules
in a database, while keeping its memory require-
ment at reasonable level. Unfortunately predictable
time performance and reasonable memory require-
ment do not come for free. Our scheme requires
hardware acceleration in order to operate efficiently.
The additional hardware required for implementing
our scheme is not as costly as a pure TCAM solu-
tion though. Another penalty we pay to support
both predictable lookup time and reduced data
structure size is the complexity of the update pro-
cess. Our classification scheme is not be suitable
for highly dynamic networking environments where

4976 M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978
new rules need to be added into classifiers over
intervals smaller than the millisecond time frame.

Despite these two drawbacks, we believe that our
work has some importance because it presents one
of few schemes that can reduce both the lookup time
and space requirement of a classifier. We further
believe that our observations on real world dat-
abases can help the research community gain a bet-
ter understanding on the relationship between the
properties and performance of packet classifiers.
Our observations and system design are novel and
can potentially pave the way for further innovations
on the design of high performance packet classifica-
tion systems for the future Internet.

Appendix
Proof of Theorem 1. To prove Theorem 1 it is suffice
to show that any element of the sets of not covered
cross products FNC(F) and partially covered cross
products FPC(F) defined by (6) and (7) is not
included into the set of fully covered cross products
FFC(F) defined by (9). We also need to show that and
that every element of the set of cross products FC(F)
is either included into one of the sets FNC(F) and
FPC(F) or FFC(F). The first of the statements is true
because any not covered or partially covered cross
product is neither an element of the set of fully-
specified filters FF(F) nor the set of intersections that
are fully-specified FF(FI(F)) nor it is contained into
any element of these sets. The second statement is
also true since the union of the sets of not covered
cross products FNC(F), partially covered cross prod-
ucts FPC(F), and fully covered cross products FFC(F)
is the set FC(F) of all cross products of F. h
Proof of Theorem 2. First we prove statement (i): If
the most specific filter for a packet FMS is a fully-
specified filter and the stage of parallel LPM
searches returns another filter FLPM = (SLPM,
DLPM) which completely contains the most specific
filter FMS (i.e., FLPM 5 FMS and FLPM � FMS),
then the source prefix SLPM must be a prefix of
SMS or the destination prefix DLPM must be a prefix
of DMS. Let us first assume that SLPM is a prefix of
SMS. We can show that this is not possible since
both SLPM and SMS match the source IP address
of the packet. In this case the LPM search on the
source IP address dimension would return the prefix
SMS of the most specific filter and not SLPM. If
DLPM is a prefix of DMS, we can also show that this
is not possible since both prefixes DLPM and DMS

match the destination IP address of the packet. In
this case the LPM search on the destination IP
address dimension would return the prefix DMS

and not DLPM. Hence statement (i) is proven.
To prove statement (ii) we consider the case when

the most specific filter for a packet FMS =
(SMS,DMS) is a partially-specified filter for which
SMS 5 * ^ DMS = *. If the LPM search on the
source IP address dimension returns a prefix SLPM

which is different from SMS, then SLPM cannot be a
prefix of SMS since SLPM is returned from an LPM
search. On the other hand, if the prefix SMS is a
prefix of SLPM, then this means that there exists a
partially-specified filter equal to (SLPM, *) which
covers the packet p and is contained into the most
specific filter FMS. However, this cannot be true
because FMS is the most specific filter for packet p.
Hence, the prefix SLPM returned from the stage of
parallel LPM searches is equal to the source prefix
of the most specific filter SMS. The proof of
statement (iii) is similar. h
Description of the update process: The update
process consists of three steps. In the first step, a
new rule is added into a set of rule-sets. All rules
in a rule-set specify the same IP prefix pair. A rule
may be added either into an existing rule-set or a
new rule-set. If the rule is added to a new rule-set,
then a second step takes place, where the source–
destination IP prefix pair of the new rule is inserted
into all classification data structures which store IP
prefix pair information. If the rule is added into an
existing rule-set then the second step is omitted. A
third step is executed afterwards where the unique
sets of transport level fields associated with the most
specific filter of every packet are determined and
added into the classifier.

Adding a new IP prefix pair

In what follows we provide a description of the
process of adding a new IP prefix pair for the
non-trivial case where the IP prefix pair is fully spec-
ified and thus creates fully-specified filter intersec-
tions with other filters. First, a search is made on
a source trie data structure. If the source prefix of
the new rule is not included into the source trie, then
this prefix is inserted into the trie. A new index is
assigned to this prefix, in this case. Otherwise the
index associated with the source prefix is obtained

M.E. Kounavis et al. / Computer Networks 51 (2007) 4951–4978 4977
from the trie. A similar procedure is followed for the
destination IP prefix of the new rule.

Once the source and destination IP prefixes of the
new rule are inserted into the source and destination
trie data structures, a search is made on the conflict
resolution trie. The search returns all partial over-
laps formed between the new filter and the filters
in conflict resolution trie. These filters are added
into conflict resolution trie.

Next, for each new filter added into the conflict
resolution trie a set of indicator filters is determined.
Indicator filters are determined by traversing the
source and destination trie data structures and by
obtaining all prefixes that match with the source
and destination prefixes of every new filter added
into the conflict resolution trie. The cross products
determined by these source and destination prefixes
are candidate indicator filters to be added into the
database.

For every candidate indicator filter a lookup is
performed on the primary table. The entry associ-
ated with the indicator filter is determined. If this
entry is empty then the indicator filter is added into
the primary table. If the filter has already been
added into the primary table, then the filter is not
added twice. In case of a collision the hash table is
updated accordingly. In the case of a wide filter
no insertions into the primary table are made but
the wide filter is inserted into a separate Cross Pro-
ducting table.

Creating sets of transport level fields

In the third step of the update process unique sets
of transport level fields are created. A total order is
created between these shared sets as discussed in
Section 5 (for the TCAM-based flavor). Once the
total order is created, an index is determined for
each ordered list of pointers returned from MSFM
as discussed in Section 5. The MSFM data struc-
tures are updated accordingly and the shared
sets of transport level fields are inserted into the
TCAM.

References

[1] P. Gupta, N. McKeown, Algorithms for packet classifica-
tion, IEEE Network Magazine (March/April) (2001).

[2] P. Tsuchiya, A search algorithm for table entries with non-
contiguous wildcarding, Technical Report, Bellcore.

[3] V. Srinivasan, S. Suri, G. Varghese, M. Waldvogel, Fast and
scalable layer four switching, in: Proceedings of ACM
SIGCOMM, 1998.
[4] T.V. Lakshman, D. Stiliadis, High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching, in: Proceedings of ACM SIGCOMM, 1998.

[5] M.M. Buddhikot, S. Suri, M. Waldvogel, Space decompo-
sition techniques for fast layer-4 switching, in: Proceedings of
the Conference on Protocols for High Speed Networks,
1999.

[6] A. Feldman, S. Muthukrishnan, Tradeoffs for packet clas-
sification, in: Proceedings of IEEE INFOCOM, 2000.

[7] P. Gupta, N. McKeown, Packet classification on multiple
fields, in: Proceedings of ACM SIGCOMM, 1999.

[8] P. Gupta, N. McKeown, Packet classification using hierar-
chical intelligent cuttings, IEEE Micro (January/February)
(2000).

[9] V. Srinivasan, S. Suri, G. Varghese, Packet classification
using tuple space search, in: Proceedings of ACM SIG-
COMM, 1999.

[10] F. Shafai, K.J. Schultz, G.F.R. Gibson, A.G. Bluschke, D.E.
Somppi, Fully parallel 30-MHz, 2.5 Mb CAM, IEEE
Journal of Solid-State Circuits (November) (1998).

[11] P. Warkhebe, S. Suri, G. Varghese, Fast packet classification
for two-dimensional conflict free filters, in: Proceedings of
IEEE INFOCOM, 2001.

[12] F. Baboescu, S. Singh, G. Varghese, Packet classification for
core routers: is there an alternative to CAMs? in: Proceed-
ings of IEEE INFOCOM, 2003.

[13] F. Baboescu, G. Varghese, Scalable packet classification, in:
Proceedings of ACM SIGCOMM, 2001.

[14] M. Degermark, A. Brodnik, S. Carlsson, St. Pink, Small
forwarding tables for fast routing lookups, in: Proceedings of
ACM SIGCOMM, 1997.

[15] D. Taylor, J. Turner, Scalable packet classification using
distributed Cross Producting of field labels, Poster Session of
ACM SIGCOMM, 2004.

[16] M.E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, A.T.
Campbell, Directions in packet classification for network
processors, in: Proceedings of the Second Workshop on
Network Processors, 2003.

[17] S. Singh, F. Baboescu, G. Varghese, J. Wang, Packet
classification using multidimensional cutting, in: Proceedings
of ACM SIGCOMM, 2003.

[18] S. Singh, Packet Classification Repository, Public Domain
Source Code, University of California, San Diego, 2003.

[19] A. Hari, S. Suri, G. Parulkar, Detecting and resolving packet
filter conflicts, in: Proceedings of IEEE INFOCOM,
2000.

[20] M.E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, Method
and apparatus for two stage packet classification using most
specific filter matching and transport level sharing, United
States Patent Application, No. 20050083935, Filed in
2003.

[21] A. Kumar, M.E. Kounavis, R. Yavatkar, H. Vin, P.
Chandra, S. Lakshmanamurthy, C. Kuo, Apparatus and
method for two stage packet classification using most
specific filter matching and transport level sharing, United
States Patent Application, No. 20050226235, Filed in
2004.

[22] M.E. Kounavis, A. Kumar, R. Yavatkar, H. Vin, Line rate
packet classification and scheduling, in: Tutorial, First
Symposium on Architectures for Networking and Commu-
nication Systems (ANCS 2005), Princeton, NJ, October
2005.

ter Networks 51 (2007) 4951–4978
Michael Kounavis is a senior Research
Scientist at Intel Corporation. He joined
Intel in 2003. Since then, he has worked
on developing novel algorithms and
solutions for line rate packet processing
and data integrity. His current research
focuses on accelerating cryptographic
algorithms and protocols. Prior to join-
ing Intel he worked on programming
network architectures at Columbia Uni-
versity. He has published over 30 papers

in leading technical journals and conferences and he is a program
committee member of the IEEE ISCC, SPECTS and IWDDS

4978 M.E. Kounavis et al. / Compu
conferences.

Alok Kumar is a staff Software Engineer
in the Digital Enterprise Group at Intel
Corporation. His interests are in the
areas of high-speed programmable rou-
ters, quality of service, and computer
graphics. He received his B.Tech degree
in Computer Science from the Indian
Institute of Technology, Delhi, in 1999,
and his M.S. degree in Computer Science
from the University of Texas at Austin in
2001.
Raj Yavatkar is an Intel Fellow and
Director of the Platform Validation
Architecture in the Digital Enterprise
Group. Previously, he led the formation
of the Systems Technology Lab involved
in advanced R&D in the areas of system
architecture and platform technologies.
From 1999 through 2004, he was the
Chief Software Architect for Intel’s IXP
family of network processors. At Intel,
he led Intel’s advanced research and

development activities in internet quality of service and pro-
grammable networks. He designed a framework for policy-based
network management that led to development of an industry-
wide technical standard. He received his Ph.D. in Computer
Science from Purdue University in 1989 and holds fourteen pat-
ents, with more than 20 pending. He is recognized as a leading
expert in the networking industry, and was the General Chair of
ACM Sigcomm 2004. He has authored or co-authored five
Internet standards. He has also published more than 40 papers in
academic journals and conferences and has co-authored the
book, Inside the Internet’s Resource Reservation Protocol
(RSVP) published by John Wiley. He serves on the editorial
board of the IEEE Network magazine and previously served as
an editor of Computer Communications, ACM/Springer-Verlag
Journal on Multimedia Systems and Kluwer’s Multimedia Tools
and Applications.

Harrick Vin is a Professor of Computer
Sciences at the University of Texas at
Austin. His research interests are in the
areas of networks, operating systems,
distributed systems, and multimedia
systems. He received his Ph.D. in Com-
puter Science from the University of
California at San Diego in 1993. He has
co-authored more than 100 papers in
leading journals and conferences. He is a
recipient of several awards including the

Faculty Fellow in Computer Sciences, Dean’s Fellowship,
National Science Foundation CAREER award, IBM Faculty

Development Award, Fellow of the IBM Austin Center for
Advanced Studies, AT&T Foundation Award, National Science
Foundation Research Initiation Award, IBM Doctoral Fellow-
ship, NCR Innovation Award, and San Diego Supercomputer
Center Creative Computing Award. He has served on the Edi-
torial Board of ACM/Springer Multimedia Systems Journal,
IEEE Transactions on Multimedia, and IEEE Multimedia. He
has been a guest editor for IEEE Network. He has served as the
program chair, the program co-chair, and a program committee
member for several conferences.

	Two stage packet classification using most specific filter matching and transport level sharing
	Introduction
	Problem formulation
	Characteristics of classification rules
	Characteristics of IP prefix pairs
	Characteristics of transport level fields
	Implications
	Classification on the source and destination IP address dimensions
	Classification on transport level fields

	Related work
	Algorithm design
	Cross Producting
	Improving Cross Producting
	Most specific filter matching (MSFM)
	Algorithm description
	Correctness
	Example
	Time and space requirements

	Transport level sharing (TLS)
	Design issues
	Algorithm description
	Hardware acceleration of TLS
	Defining a total order for sets of transport level fields
	Creating an index for TCAM entries

	Evaluation
	Concluding remarks
	 blank
	Adding a new IP prefix pair
	Creating sets of transport level fields

	References

